Whipple's disease was initially described in 1907. Over the next century, the clinical and pathological features of this disorder have been better appreciated. Most often, weight loss, diarrhea, abdominal and join...Whipple's disease was initially described in 1907. Over the next century, the clinical and pathological features of this disorder have been better appreciated. Most often, weight loss, diarrhea, abdominal and joint pain occur. Occasionally, other sites of involvement have been documented, including isolated neurological disease, changes in the eyes and culture-negative endocarditis. In the past decade, the responsible organism Tropheryma whipplei has been cultivated, its genome sequenced and its antibiotic susceptibility defined. Although rare, it is a systemic infection that may mimic a wide spectrum of clinical disorders and may have a fatal outcome. If recognized, prolonged antibiotic therapy may be a very successful form of treatment.展开更多
NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily.It was originally considered to be essential in the generation and maintenance of dopaminergic neurons,and associated with n...NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily.It was originally considered to be essential in the generation and maintenance of dopaminergic neurons,and associated with neurological disorders such as Parkinson's disease.Recently,NR4A2 has been found to play a critical role in some inflammatory diseases and cancer.NR4A2 can be efficiently trans-activated by some proinflammatory cytokines,such as tumor necrosis factor-α,interleukin-1β,and vascular endothelial growth factor(VEGF).The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells.NR4A2 can trans-activate Foxp3,a hallmark specifically expressed in regulatory T(Treg) cells,and plays a critical role in the differentiation,maintenance,and function of Treg cells.NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions.High density of Foxp3 + Treg cells is significantly associated with gastrointestinal inflammation,tumor immune escape,and disease progression.NR4A2 is produced at high levels in CD133 + colorectal carcinoma(CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E 2 in a cyclic adenosine monophosphate(cAMP)/protein kinase A(PKA)-dependent manner in CRC cells.The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer.NR4A2 trans-activates osteopontin,a direct target of the Wnt/β-catenin pathway associated with CRC invasion,metastasis,and poor prognosis.Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation,migration and in vivo angiogenesis.Taken together,NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer,especially CRC,and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.展开更多
Neurodegenerative diseases(NDs)are a major threat to the elderly,and efficient therapy is rarely available.A group of phytochemicals has been shown to ameliorate NDs;however,poor stability,low bioavailability,and redu...Neurodegenerative diseases(NDs)are a major threat to the elderly,and efficient therapy is rarely available.A group of phytochemicals has been shown to ameliorate NDs;however,poor stability,low bioavailability,and reduced drug accumulation in brain tissue limit their application in NDs.Therefore,a targeted drug delivery system is a feasible treatment strategy for NDs.Extracellular vesicles(EVs)possess many favorable bioactivities and are excellent carriers for targeting brain tissue.This review summarizes EVs as novel phytochemical carriers in ND therapy.First,we discuss the current challenges of ND therapy and the therapeutic effects of phytochemicals for NDs.Second,we highlight the ability of EVs to cross the blood-brain barrier and act as drug carriers to enhance the therapeutic efficacy of drugs for NDs.Finally,encapsulation strategies for phytochemicals in EVs are particularly reviewed,as they are critical for obtaining high loading efficacy and stable drug delivery systems.This review provides new insights into EV-based drug delivery systems for improving the therapeutic effect of phytochemicals for ND treatment.Therefore,the release rate and pharmacokinetics of phytochemicals should be well controlled to ensure the therapeutic efficacy of phytochemical-loaded EVs in the brain.展开更多
Paraneoplastic neurological syndromes(PNS) is a series of rare neurologic disorders which happen with an underlying malignancy. It has various clinical symptoms proceding to the diagnosis of tumors. Although the abnor...Paraneoplastic neurological syndromes(PNS) is a series of rare neurologic disorders which happen with an underlying malignancy. It has various clinical symptoms proceding to the diagnosis of tumors. Although the abnormality of anti-neuronal antibodies is suggestive of PNS and tumors, there exist many false positive and false negative cases. The diagnosis of PNS is usually a challenge in clinic. Positron emission tomography/computed tomography(PET/CT) imaging is an anatomical and functional fusion imaging method, which provides the whole-body information by single scan. Fluorodeoxyglucose(FDG) PET/CT imaging can not only detect potential malignant lesions in the whole body, but also assess functional abnormality in the brain. In this review, the mechanism, clinical manifestation, diagnostic procedure and the recent progress of the utility of FDG PET/CT in PNS are introduced respectively.展开更多
We report here, a young male patients referred with "Obsessive Compulsive Disorder" symptoms which emerged after the successful treatment of pineal germinoma. OCD (obsessive-compulsive disorder) is a frequent, chr...We report here, a young male patients referred with "Obsessive Compulsive Disorder" symptoms which emerged after the successful treatment of pineal germinoma. OCD (obsessive-compulsive disorder) is a frequent, chronic, and clinically disorder which may presents in several neurologic disorders, especially occurs, in early adult life. Essential features of OCD are obsessional thoughts, compulsive acts as the ritualistic behavior, anxiety, and specific cognitive impairments. The cause of obsessive-compulsive disorder isn't fully understood. One of the many theories of the pathophysioiogy about to OCD is includes with hyperactivity in certain subcortical and cortical regions of brain also, dysfunction of the cortico-striatal circuits, particularly implicated in orbitofrontal cortices and basal ganglions. Additionally, pineal gland functioning is remarkable for the mental health disorders, particularly in OCD. On the basis of the investigations to present case report, we discussed the probable reasons of OCD symptoms, emphasizing the role of pathophysiology including the cortico subcortical pathways in genesis of the symptoms.展开更多
Epilepsy is a severe neurological disorder clinically identified by hyper-excitability and/or hyper-synchrony in the cortex and other subcortical regions of the brain. To regulate such excitability and synchrony, Hodg...Epilepsy is a severe neurological disorder clinically identified by hyper-excitability and/or hyper-synchrony in the cortex and other subcortical regions of the brain. To regulate such excitability and synchrony, Hodgkin and Huxley model has been deployed with either PUFA or calcium buffering coupled with ATP modulate neurotransmitter release. We formulate and analyze a system of differential equations that describe the effects of PUFA, ATP, and calcium buffering in regulating neuronal hyper-excitability and hyper-synchrony in epileptic patients. We observed that PUFA had diverse effects on the gating variables. Specifically, there was a significant reduction in the inhibitory potency of PUFA on the m-gates which may cause a direct inhibition of the voltage-gated Na+ channels and thus reduce neuronal excitability in epileptic patients. Also, the activation of the potassium channels by PUFA directly limited the neuronal hyper-excitability, while a small change in voltage potential coupled with PUFA restraint activated the voltage dependent ion channels which aided in lowering epileptic excitability in patients. In addition, higher ATP buffer levels in the presence of PUFA caused a significant hyperpolarization which may decrease neuronal excitability while lower ATP level initiated neuron depolarization. These results clearly suggest that PUFA coupled with calcium and ATP buffering could be used to modulate neuronal excitability excessive synchrony in epileptic patients.展开更多
Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders including Huntington’s disease, spinobulbar muscular atrophy,dentatorubral-pallidoluysian atrophy and several spinocerebellar ataxias.polyQ...Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders including Huntington’s disease, spinobulbar muscular atrophy,dentatorubral-pallidoluysian atrophy and several spinocerebellar ataxias.polyQ diseases are caused by abnormal expansion of CAG repeats in certain genes.The expanded CAG repeats are then translated into a series of abnormally expanded polyQ tracts.Such polyQ tracts may induce misfolding of the disease-causing proteins.The present review mainly focuses on the common characteristics of the pathogenesis of these polyQ diseases,including conformational transition of proteins and its influence on the function of these proteins,the correlation between decreased ability of proteoly-sis and late-onset polyQ diseases,and the relationship between wide expression of disease-causing proteins and selective neuronal death.展开更多
Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of develop- ment including organogenesis, mid brain development as welt as stem cell proliferat...Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of develop- ment including organogenesis, mid brain development as welt as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological pro- cesses. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampai synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.展开更多
Multiple sclerosis(MS) is an autoimmune disease of the central nervous system(CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and th...Multiple sclerosis(MS) is an autoimmune disease of the central nervous system(CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell(NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells(iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis(EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.展开更多
Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in th...Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in the central nervous system(CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter – nitric oxide(NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase(hi NOS) and enhanced the promoter activity of hi NOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.展开更多
Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylat...Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylation, transport, surveillance, mRNA localization, mRNA stability control, translational control and editing of various types of RNAs. Aberrant expression of and mutations in RBP genes affect various steps of RNA processing, altering target gene function. RBPs have been associ- ated with various diseases, including neurological diseases. Here, we mainly focus on selected RNA-binding proteins including Nova-i/Nova-2, HuR/HuB/HuC/HuD, TDP-43, Fus, Rbfoxl/Rbfox2, QKI and FMRP, discussing their function and roles in human diseases.展开更多
Objective:To investigate the culture method of skin-derived precursors (SKPs) and to explore a new cell source for cell transp lantation of central nervous system. Methods:Cells from skins of juvenile and adult mice w...Objective:To investigate the culture method of skin-derived precursors (SKPs) and to explore a new cell source for cell transp lantation of central nervous system. Methods:Cells from skins of juvenile and adult mice were iso lated and cultured in serum-free medium. A mechanical method was chosen to pass age these cells and they were identified by the immunocytochemistry assay. Results:SKPs could be isolated from adult and neonatal skins . They could be maintained in vitro for long periods with stable proliferation, and expanded as undifferentiated cells in culture for more than 12 passages. Abo ut 50% of SKPs expressed nestin and majority of these cells expressed fibronecti n when they were plated on polyornithine and laminin coated plates. About 5% cel ls showed neuronal differentiation and expressed neurofilament-M (NF-M) and NS E when SKPs were plated in serum-containing medium, and these cells could also differentiate into adipocytes and fibroblast-like cells. Conclusions:The data support the hypothesis that adult skin contains stem cells capable of differentiating into neurons, adipocytes, and fib roblast-like cells. They may represent an alternative autologous stem cell sour ce for CNS cell transplantation.展开更多
文摘Whipple's disease was initially described in 1907. Over the next century, the clinical and pathological features of this disorder have been better appreciated. Most often, weight loss, diarrhea, abdominal and joint pain occur. Occasionally, other sites of involvement have been documented, including isolated neurological disease, changes in the eyes and culture-negative endocarditis. In the past decade, the responsible organism Tropheryma whipplei has been cultivated, its genome sequenced and its antibiotic susceptibility defined. Although rare, it is a systemic infection that may mimic a wide spectrum of clinical disorders and may have a fatal outcome. If recognized, prolonged antibiotic therapy may be a very successful form of treatment.
基金Supported by National Natural Science Foundation of China, No.81025015,30921006,91129301
文摘NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily.It was originally considered to be essential in the generation and maintenance of dopaminergic neurons,and associated with neurological disorders such as Parkinson's disease.Recently,NR4A2 has been found to play a critical role in some inflammatory diseases and cancer.NR4A2 can be efficiently trans-activated by some proinflammatory cytokines,such as tumor necrosis factor-α,interleukin-1β,and vascular endothelial growth factor(VEGF).The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells.NR4A2 can trans-activate Foxp3,a hallmark specifically expressed in regulatory T(Treg) cells,and plays a critical role in the differentiation,maintenance,and function of Treg cells.NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions.High density of Foxp3 + Treg cells is significantly associated with gastrointestinal inflammation,tumor immune escape,and disease progression.NR4A2 is produced at high levels in CD133 + colorectal carcinoma(CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E 2 in a cyclic adenosine monophosphate(cAMP)/protein kinase A(PKA)-dependent manner in CRC cells.The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer.NR4A2 trans-activates osteopontin,a direct target of the Wnt/β-catenin pathway associated with CRC invasion,metastasis,and poor prognosis.Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation,migration and in vivo angiogenesis.Taken together,NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer,especially CRC,and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.
基金supported by the National Natural Science Foundation of China(Grant 31700714)the Young Scholars Supporting Program of Nanjing University of Finance and Economics(Grant ZZZXW20001)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Neurodegenerative diseases(NDs)are a major threat to the elderly,and efficient therapy is rarely available.A group of phytochemicals has been shown to ameliorate NDs;however,poor stability,low bioavailability,and reduced drug accumulation in brain tissue limit their application in NDs.Therefore,a targeted drug delivery system is a feasible treatment strategy for NDs.Extracellular vesicles(EVs)possess many favorable bioactivities and are excellent carriers for targeting brain tissue.This review summarizes EVs as novel phytochemical carriers in ND therapy.First,we discuss the current challenges of ND therapy and the therapeutic effects of phytochemicals for NDs.Second,we highlight the ability of EVs to cross the blood-brain barrier and act as drug carriers to enhance the therapeutic efficacy of drugs for NDs.Finally,encapsulation strategies for phytochemicals in EVs are particularly reviewed,as they are critical for obtaining high loading efficacy and stable drug delivery systems.This review provides new insights into EV-based drug delivery systems for improving the therapeutic effect of phytochemicals for ND treatment.Therefore,the release rate and pharmacokinetics of phytochemicals should be well controlled to ensure the therapeutic efficacy of phytochemical-loaded EVs in the brain.
基金Supported by grants from the National Natural Science Foundation of China(No.81101065,31100604)Higher Education Doctoral Program of China Research Fund for New Teacher(No.20110001120043)+1 种基金National Major Scientific Equipment Special Fund(No.2011YQ03011409)Beijing Capital Special Development Application Program(No.Z141107002514159)
文摘Paraneoplastic neurological syndromes(PNS) is a series of rare neurologic disorders which happen with an underlying malignancy. It has various clinical symptoms proceding to the diagnosis of tumors. Although the abnormality of anti-neuronal antibodies is suggestive of PNS and tumors, there exist many false positive and false negative cases. The diagnosis of PNS is usually a challenge in clinic. Positron emission tomography/computed tomography(PET/CT) imaging is an anatomical and functional fusion imaging method, which provides the whole-body information by single scan. Fluorodeoxyglucose(FDG) PET/CT imaging can not only detect potential malignant lesions in the whole body, but also assess functional abnormality in the brain. In this review, the mechanism, clinical manifestation, diagnostic procedure and the recent progress of the utility of FDG PET/CT in PNS are introduced respectively.
文摘We report here, a young male patients referred with "Obsessive Compulsive Disorder" symptoms which emerged after the successful treatment of pineal germinoma. OCD (obsessive-compulsive disorder) is a frequent, chronic, and clinically disorder which may presents in several neurologic disorders, especially occurs, in early adult life. Essential features of OCD are obsessional thoughts, compulsive acts as the ritualistic behavior, anxiety, and specific cognitive impairments. The cause of obsessive-compulsive disorder isn't fully understood. One of the many theories of the pathophysioiogy about to OCD is includes with hyperactivity in certain subcortical and cortical regions of brain also, dysfunction of the cortico-striatal circuits, particularly implicated in orbitofrontal cortices and basal ganglions. Additionally, pineal gland functioning is remarkable for the mental health disorders, particularly in OCD. On the basis of the investigations to present case report, we discussed the probable reasons of OCD symptoms, emphasizing the role of pathophysiology including the cortico subcortical pathways in genesis of the symptoms.
文摘Epilepsy is a severe neurological disorder clinically identified by hyper-excitability and/or hyper-synchrony in the cortex and other subcortical regions of the brain. To regulate such excitability and synchrony, Hodgkin and Huxley model has been deployed with either PUFA or calcium buffering coupled with ATP modulate neurotransmitter release. We formulate and analyze a system of differential equations that describe the effects of PUFA, ATP, and calcium buffering in regulating neuronal hyper-excitability and hyper-synchrony in epileptic patients. We observed that PUFA had diverse effects on the gating variables. Specifically, there was a significant reduction in the inhibitory potency of PUFA on the m-gates which may cause a direct inhibition of the voltage-gated Na+ channels and thus reduce neuronal excitability in epileptic patients. Also, the activation of the potassium channels by PUFA directly limited the neuronal hyper-excitability, while a small change in voltage potential coupled with PUFA restraint activated the voltage dependent ion channels which aided in lowering epileptic excitability in patients. In addition, higher ATP buffer levels in the presence of PUFA caused a significant hyperpolarization which may decrease neuronal excitability while lower ATP level initiated neuron depolarization. These results clearly suggest that PUFA coupled with calcium and ATP buffering could be used to modulate neuronal excitability excessive synchrony in epileptic patients.
基金supported by the grants from the National Natural Science Foundation of China(No.30600197)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050285017)
文摘Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders including Huntington’s disease, spinobulbar muscular atrophy,dentatorubral-pallidoluysian atrophy and several spinocerebellar ataxias.polyQ diseases are caused by abnormal expansion of CAG repeats in certain genes.The expanded CAG repeats are then translated into a series of abnormally expanded polyQ tracts.Such polyQ tracts may induce misfolding of the disease-causing proteins.The present review mainly focuses on the common characteristics of the pathogenesis of these polyQ diseases,including conformational transition of proteins and its influence on the function of these proteins,the correlation between decreased ability of proteoly-sis and late-onset polyQ diseases,and the relationship between wide expression of disease-causing proteins and selective neuronal death.
文摘Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of develop- ment including organogenesis, mid brain development as welt as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological pro- cesses. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampai synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.
基金supported by the China National Basic Research Program(2013CB966901,2012CBA01303)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA01040108)+1 种基金National Thousand Young Talents Program to Tongbiao Zhaothe National Natural Science Foundation of China Program((31271592,31570995)to Tongbiao Zhao,(31400831)to Jiani Cao)
文摘Multiple sclerosis(MS) is an autoimmune disease of the central nervous system(CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell(NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells(iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis(EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.
基金supported by grants from the National Natural Sciences Foundation of China(No.31470264,No.81271820,No.30870789,and No.30300117)the Key Program of Natural Science Foundation of Hubei Province of China(No.2014CFA078)+1 种基金the Stanley Foundation from the Stanley Medical Research Institute(SMRI),USA(No.06R-1366),to Dr.Fan Zhuthe Scientific Innovation Team Project of Hubei Province of China(No.2015CFA009)
文摘Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in the central nervous system(CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter – nitric oxide(NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase(hi NOS) and enhanced the promoter activity of hi NOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
基金Zhou HuaLin is supported by National Basic Research Program of China(2013CB917803)research fund for the State Key Laboratory of Cog-nitive Neuroscience and Learning from Institute of Biophysics,Chinese Academy of Sciences(7Y1SNY7007)+3 种基金supported by the Ross Maclean Senior Research Fellowship and the Peter Goodenough BequestZhu Li and Liu JiangHong are supported by grants from the Na-tional Major Basic Research Program of China(2010CB529603)the National Natural Science Foundation of China(91132710,31200561)Jane Y.Wu is supported by the US National Institutes of Health
文摘Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylation, transport, surveillance, mRNA localization, mRNA stability control, translational control and editing of various types of RNAs. Aberrant expression of and mutations in RBP genes affect various steps of RNA processing, altering target gene function. RBPs have been associ- ated with various diseases, including neurological diseases. Here, we mainly focus on selected RNA-binding proteins including Nova-i/Nova-2, HuR/HuB/HuC/HuD, TDP-43, Fus, Rbfoxl/Rbfox2, QKI and FMRP, discussing their function and roles in human diseases.
基金ThisworkwassupportedbyNaturalScienceFoundationofGuangdongProvince (No .01245200001)andtheNationalNaturalScienceFoundationofChina(KeyProjectNo .3 9993 4 3 0 )
文摘Objective:To investigate the culture method of skin-derived precursors (SKPs) and to explore a new cell source for cell transp lantation of central nervous system. Methods:Cells from skins of juvenile and adult mice were iso lated and cultured in serum-free medium. A mechanical method was chosen to pass age these cells and they were identified by the immunocytochemistry assay. Results:SKPs could be isolated from adult and neonatal skins . They could be maintained in vitro for long periods with stable proliferation, and expanded as undifferentiated cells in culture for more than 12 passages. Abo ut 50% of SKPs expressed nestin and majority of these cells expressed fibronecti n when they were plated on polyornithine and laminin coated plates. About 5% cel ls showed neuronal differentiation and expressed neurofilament-M (NF-M) and NS E when SKPs were plated in serum-containing medium, and these cells could also differentiate into adipocytes and fibroblast-like cells. Conclusions:The data support the hypothesis that adult skin contains stem cells capable of differentiating into neurons, adipocytes, and fib roblast-like cells. They may represent an alternative autologous stem cell sour ce for CNS cell transplantation.