期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于BP神经网络的云南花卉物流需求预测 被引量:7
1
作者 贺梦桐 张凌 《物流科技》 2024年第1期63-66,共4页
文章首先对云南花卉市场进行现状分析,在此基础上以近10年来云南花卉总产值为变量依据,来预测云南花卉的未来物流需求量情况。文章提出了可能会影响花卉物流需求量的8个因素,运用BP神经网络预测法并结合近10年的云南花卉总产值对未来3... 文章首先对云南花卉市场进行现状分析,在此基础上以近10年来云南花卉总产值为变量依据,来预测云南花卉的未来物流需求量情况。文章提出了可能会影响花卉物流需求量的8个因素,运用BP神经网络预测法并结合近10年的云南花卉总产值对未来3年的需求量进行预测。预测结果表明,未来几年,云南花卉市场对于物流的需求不降反增。而作为鲜活植物产品,花卉的运输又对冷链物流提出了更高的要求。因此,提高冷链物流的技术势在必行。 展开更多
关键词 云南花卉 BP神经网络预测法 物流需求 冷链物流
在线阅读 下载PDF
煤矿安全宏观预测方法综述
2
作者 王超 陈开岩 《安全》 2006年第2期17-19,共3页
对几种比较适用干预测煤矿安全宏观预测的方法(线性回归预测、非线性回归预测、灰色预测、马尔柯夫链预测、灰色马尔柯夫链预测、神经网络预测法)进行了介绍,并作了进一步评述和探讨。
关键词 煤矿安全宏观预测 线性回归预测 非线性回归预测 灰色预测 马尔柯夫链预测 灰色马尔柯夫链预测 神经网络预测法
在线阅读 下载PDF
基于实例的水资源预测方法概述 被引量:1
3
作者 王茜 江兵 《科技和产业》 2008年第2期30-32,共3页
基于合肥市近几年的城市生活用水量数据为例,对一些水资源预测方法进行讨论和比较。对合肥市城市生活用水量的现状进行简要的概述;介绍三种水资源预测方法即指数平滑法、灰色模型预测法和BP神经网络预测法的理论方法及模型;利用给定的... 基于合肥市近几年的城市生活用水量数据为例,对一些水资源预测方法进行讨论和比较。对合肥市城市生活用水量的现状进行简要的概述;介绍三种水资源预测方法即指数平滑法、灰色模型预测法和BP神经网络预测法的理论方法及模型;利用给定的资料数据,运用三种预测方法进行分析,通过拟和模型误差对比,判定最佳的预测方法。 展开更多
关键词 城市生活用水量 预测 指数平滑 灰色模型预测 BP神经网络预测法
在线阅读 下载PDF
港口集装箱吞吐量预测方法研究 被引量:3
4
作者 刘婷 林连 《苏州科技学院学报(工程技术版)》 CAS 2011年第4期44-46,共3页
介绍了BP神经网络预测法、回归分析预测法和二次指数平滑预测法,以厦门港集装箱吞吐量的预测为例进行比较和分析。结果表明:BP神经网络预测法的预测精度高于后两种预测方法,其预测结果的可靠性最高。
关键词 集装箱吞吐量 预测模型 BP神经网络预测法
在线阅读 下载PDF
完整桩极限承载力的偏最小二乘回归预测法
5
作者 郑大叶 钱德玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第6期1248-1252,共5页
关于完整桩轴向极限载力Qu与桩长L、桩径d、桩的阻尼自振基频f1、桩的应力波波速c以及桩的单位动刚度Kd等参数,已知Qu的大小与上述5个参数存在一定的关系,现采用偏最小二乘回归方法对其进行描述。偏最小二乘回归方法是近年来产生和发展... 关于完整桩轴向极限载力Qu与桩长L、桩径d、桩的阻尼自振基频f1、桩的应力波波速c以及桩的单位动刚度Kd等参数,已知Qu的大小与上述5个参数存在一定的关系,现采用偏最小二乘回归方法对其进行描述。偏最小二乘回归方法是近年来产生和发展的一个具有广泛适用性的多元统计分析方法。其特有的选择因子方式与传统方法迥然不同,而其计算量比传统方法都小。它意义明确,计算简单,建模效果好,解释性强,日益成为工程技术人员和经济管理工作者能够熟练掌握的实用工具。 展开更多
关键词 完整桩 极限承载力 偏最小二乘回归预测 多元统计分析 人工神经网络预测法
在线阅读 下载PDF
中国股票市场的非线性确定性预测
6
作者 朱梅 王海燕 《安徽工程科技学院学报(自然科学版)》 2004年第2期10-13,共4页
运用混沌动力学理论对上证综合指数进行非线性建模预测,首先相对于传统的取对数后相减的消除趋势方法采用对数线性去趋势方法,其次,用延迟重构技术计算得到嵌入维数和延迟时间间隔,预测结果表明所采用方法无论用局部线性预测法,还是用... 运用混沌动力学理论对上证综合指数进行非线性建模预测,首先相对于传统的取对数后相减的消除趋势方法采用对数线性去趋势方法,其次,用延迟重构技术计算得到嵌入维数和延迟时间间隔,预测结果表明所采用方法无论用局部线性预测法,还是用局部常数预测法或神经网络预测法都能更好地对股价指数进行预测,并初步推测了预测效果得到改进的原因. 展开更多
关键词 股票市场 上证综合指数 股价指数 局部线性预测 局部常数预测 神经网络预测法 中国
在线阅读 下载PDF
基于ANP-BP模型地铁隧道沉降预测研究 被引量:15
7
作者 龙熙华 贾宁娟 万军 《现代隧道技术》 EI 北大核心 2013年第5期105-111,共7页
文章针对地铁隧道沉降的复杂性和不确定性,深入分析了地铁隧道沉降的主要影响因素;运用网络层次分析法(ANP)的超决策(Super Decisions,下称SD)软件求解方法求得各影响因素的权重;并以此作为BP神经网络的初始权重,通过训练网络对该权重... 文章针对地铁隧道沉降的复杂性和不确定性,深入分析了地铁隧道沉降的主要影响因素;运用网络层次分析法(ANP)的超决策(Super Decisions,下称SD)软件求解方法求得各影响因素的权重;并以此作为BP神经网络的初始权重,通过训练网络对该权重进行微调;在此基础上,提出了综合考虑各因素、各层次之间相互反馈和影响的ANP-BP模型。据此模型对西安地铁隧道沉降进行预测,通过与遗传算法和粒子群算法优化BP神经网络的对比试验分析,该模型体现出了适应性强、收敛快、精度高的优势,取得了很好的预测效果。 展开更多
关键词 地铁隧道 沉降预测网络层次分析BP神经网络
在线阅读 下载PDF
A prediction comparison between univariate and multivariate chaotic time series 被引量:3
8
作者 王海燕 朱梅 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期414-417,共4页
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim... The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error. 展开更多
关键词 multivariate chaotic time series phase space reconstruction PREDICTION neural networks
在线阅读 下载PDF
Evolving Neural Networks Using an Improved Genetic Algorithm 被引量:2
9
作者 温秀兰 宋爱国 +1 位作者 段江海 王一清 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期367-369,共3页
A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen... A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove... 展开更多
关键词 genetic algorithms neural network nonlinear forecasting
在线阅读 下载PDF
STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING METHOD OF WATER CONSUMPTION PER HOUR 被引量:5
10
作者 刘洪波 张宏伟 +1 位作者 田林 王新芳 《Transactions of Tianjin University》 EI CAS 2001年第4期233-237,共5页
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no... An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system. 展开更多
关键词 artificial neural network consumption per hour FORECAST BP algorithm MATLAB
在线阅读 下载PDF
NEURAL NETWORK PREDICTIVE CONTROL WITH HIERARCHICAL GENETIC ALGORITHM
11
作者 刘宝坤 王慧 李光泉 《Transactions of Tianjin University》 EI CAS 1998年第2期48-50,共3页
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da... A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness. 展开更多
关键词 neural networks(NN) predictive control hierarchical genetic algorithms nonlinear system
在线阅读 下载PDF
基于量化分析的股票投资策略 被引量:2
12
作者 张清洁 钱魏冬 《河北北方学院学报(自然科学版)》 2020年第11期50-56,共7页
目的通过量化分析研究股票价格的走势,为投资策略的制定提供参考依据。方法选取2007年1月1日至2018年12月31日上海证券指数(上证指数)每日交易收盘价作为原始数据,总共2790个样本数据。首先,利用MATLAB对指数平滑法、RBF神经网络预测法... 目的通过量化分析研究股票价格的走势,为投资策略的制定提供参考依据。方法选取2007年1月1日至2018年12月31日上海证券指数(上证指数)每日交易收盘价作为原始数据,总共2790个样本数据。首先,利用MATLAB对指数平滑法、RBF神经网络预测法和马尔科夫链预测法进行编程。然后,采用以上3种预测法对上证指数的样本数据进行预测分析。结果指数平滑法中二次指数平滑法的预测误差最小,二次指数平滑法拟合出的上证指数的预测值与其实际值的走势基本吻合。ARCH-LM检验显示基于二次指数平滑法得到的误差序列不存在ARCH效应。结论二次指数平滑法的拟合效果较精确,可以选用二次指数平滑法的研究结果为股票投资策略的制定提供参考。 展开更多
关键词 上证指数 指数平滑 时间序列分析 RBF神经网络预测法
在线阅读 下载PDF
Optimizing neural network forecast by immune algorithm 被引量:2
13
作者 杨淑霞 李翔 +1 位作者 李宁 杨尚东 《Journal of Central South University of Technology》 EI 2006年第5期573-576,共4页
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat... Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast. 展开更多
关键词 neural network FORECAST immune algorithm OPTIMIZATION
在线阅读 下载PDF
Research on Prediction of Red Tide Based on Fuzzy Neural Network
14
作者 张容 阎红 杜丽萍 《Marine Science Bulletin》 CAS 2006年第1期83-91,共9页
In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the dens... In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better. 展开更多
关键词 red tide prediction fuzzy neural network (FNN) Back Propagation Algorithm
在线阅读 下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:2
15
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method Back-propagation neural network Hybrid forecast model
在线阅读 下载PDF
Prediction of Gas Holdup in Bubble Columns Using Artificial Neural Network 被引量:1
16
作者 吴元欣 罗湘华 +4 位作者 陈启明 李定或 李世荣 M.H.Al-Dahhan M.P.Dudukovic 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期162-165,共4页
A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method rel... A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method relying on artificial neural network, dimensional analysis and phenomenological approaches was used and the model prediction agreed with the experimental data with average relative error less than 10%. 展开更多
关键词 bubble column gas holdup artificial neural network CORRELATIONS
在线阅读 下载PDF
Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks 被引量:5
17
作者 Ghiasi Majid Askarnejad Nematollah +1 位作者 Dindarloo Saeid R. Shamsoddini Hamed 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期183-184,共2页
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul... The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively. 展开更多
关键词 Blast boulder Artificial neural networks Multiple regression Golegohar iron ore mine
在线阅读 下载PDF
Development of viscosity model for aluminum alloys using BP neural network 被引量:6
18
作者 Heng-cheng LIAO Yuan GAO +1 位作者 Qi-gui WANG Dan WILSON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2978-2985,共8页
Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of ... Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy. 展开更多
关键词 BP neural network aluminum alloy VISCOSITY genetic algorithm prediction model
在线阅读 下载PDF
Prediction for asphalt pavement water film thickness based on artificial neural network 被引量:4
19
作者 Ma Yaolu Geng Yanfen +1 位作者 Chen Xianhua Lu Yankun 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期490-495,共6页
In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural netw... In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural network(ANN)a d two-dimensional shallow water equations based on hydrodynamic theory.Multi-factors included the rainfall intensity,pavement width,cross slope,longitudinal slope a d pavement roughness coefficient.The two-dimensional hydrodynamic method was validated by a natural rainfall event.Based on the design scheme o f Shen-Sha expressway engineering project,the limited training data obtained by the two-dimensional hydrodynamic simulation model was used to predict water film thickness.Furthermore,the distribution of the water film thickness influenced by multi-factors on the pavement was analyzed.The accuracy o f the ANN model was verified by the18sets o f data with a precision o f0.991.The simulation results indicate that the water film thickness increases from the median strip to the edge o f the pavement.The water film thickness variation is obviously influenced by rainfall intensity.Under the condition that the pavement width is20m and t e rainfall intensity is3m m/h,t e water film thickness is below10mm in the fast lane and20mm in t e lateral lane.Athough there is fluctuation due to the amount oftraining data,compared with the calculation on the basis o f the existing criterion and theory,t e ANN model exhibits a better performance for depicting the macroscopic distribution of the asphalt pavement water film. 展开更多
关键词 pavement engineering water film thickness artificial neural network hydrodynamic method prediction analysis
在线阅读 下载PDF
Prediction of 2A70 aluminum alloy flow stress based on BP artificial neural network 被引量:3
20
作者 刘芳 单德彬 +1 位作者 吕炎 杨玉英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期368-371,共4页
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-... The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress. 展开更多
关键词 A70 aluminum alloy flow stress BP artificial neural network PREDICTION
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部