为进一步研究基于字典学习的机织物纹理表征算法的稳定性与可比性,提出用离散余弦变换(DCT)过完备字典稀疏表征算法来重构织物纹理图像。重点探讨了稀疏度、子窗口大小、字典个数对纹理表征效果的影响,利用均方根误差和峰值信噪比指标...为进一步研究基于字典学习的机织物纹理表征算法的稳定性与可比性,提出用离散余弦变换(DCT)过完备字典稀疏表征算法来重构织物纹理图像。重点探讨了稀疏度、子窗口大小、字典个数对纹理表征效果的影响,利用均方根误差和峰值信噪比指标对机织物原图与重构图像之间的近似程度进行量化,并确定最终优选的稀疏度为10,子窗口大小为8像素×8像素,字典个数为256。实验结果表明,所提方法不仅方便快捷,还可得到较好的表征效果。此外,其DCT过完备字典峰值信噪比值仅次于基于训练的自适应学习字典,且优于主成分分析和非稀疏表征算法约4 d B。展开更多
要非局部均值(non-local means,NLM)去噪算法已成为较有效去除图像噪声的算法之一。然而,当噪声水平较高时,NLM不能准确地计算图像块之间的相似度权重值,影响图像的去噪效果。针对上述问题,结合离散余弦变换(discrete cosinetransform,D...要非局部均值(non-local means,NLM)去噪算法已成为较有效去除图像噪声的算法之一。然而,当噪声水平较高时,NLM不能准确地计算图像块之间的相似度权重值,影响图像的去噪效果。针对上述问题,结合离散余弦变换(discrete cosinetransform,DCT)提出了基于DCT的非局部均值滤波算法。首先,利用DCT的低频系数重构图像,以达到滤除部分噪声的同时保护图像的主要内容。其次,利用重构图像较准确地计算图像块之间的相似度权重值,将NLM去噪算法用于噪声图像。实验结果表明,该算法能够得到较高的峰值信噪比(peak signal to noise ratio,PSNR)和更好的视觉效果。展开更多
文摘为进一步研究基于字典学习的机织物纹理表征算法的稳定性与可比性,提出用离散余弦变换(DCT)过完备字典稀疏表征算法来重构织物纹理图像。重点探讨了稀疏度、子窗口大小、字典个数对纹理表征效果的影响,利用均方根误差和峰值信噪比指标对机织物原图与重构图像之间的近似程度进行量化,并确定最终优选的稀疏度为10,子窗口大小为8像素×8像素,字典个数为256。实验结果表明,所提方法不仅方便快捷,还可得到较好的表征效果。此外,其DCT过完备字典峰值信噪比值仅次于基于训练的自适应学习字典,且优于主成分分析和非稀疏表征算法约4 d B。
文摘要非局部均值(non-local means,NLM)去噪算法已成为较有效去除图像噪声的算法之一。然而,当噪声水平较高时,NLM不能准确地计算图像块之间的相似度权重值,影响图像的去噪效果。针对上述问题,结合离散余弦变换(discrete cosinetransform,DCT)提出了基于DCT的非局部均值滤波算法。首先,利用DCT的低频系数重构图像,以达到滤除部分噪声的同时保护图像的主要内容。其次,利用重构图像较准确地计算图像块之间的相似度权重值,将NLM去噪算法用于噪声图像。实验结果表明,该算法能够得到较高的峰值信噪比(peak signal to noise ratio,PSNR)和更好的视觉效果。