To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t...To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.展开更多
A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of chan...A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.展开更多
基金The National Basic Research Program of China(973Program)(No.2013CB329003)
文摘To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.
基金Supported by the Starting Fund for Science Research of NJUST (AB41947)the Open Research Fund of National Mobile Communications Research Laboratory (N200609)Science Research Developing Fund of NJUST (XKF07023)
文摘A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.