Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q...In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.展开更多
In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibou...In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibourhood of the equilibrium points of the dynamical systems.展开更多
In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibo...In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibourhed of the equilibrium points of the dynamical systems.展开更多
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
In this paper,we consider the dynamical system which are from general Hemilton systems under a disturbance,we use theories in Liapunov stability and show that there are not any periodic solutions in some a neighborhoo...In this paper,we consider the dynamical system which are from general Hemilton systems under a disturbance,we use theories in Liapunov stability and show that there are not any periodic solutions in some a neighborhood of the equilibrium points of the dynamical systems.展开更多
The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guar...The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guarantee the existence and global exponential stability of periodic attractor. Our results improve and extend some existing ones in [13-14]. One example is also worked out to demonstrate the advantages of our results.展开更多
This paper studies the stability of the periodic solutions of the second order Hamiltonian systems with even superquadratic or subquadratic potentials. The author proves that in the subquadratic case, there exist infi...This paper studies the stability of the periodic solutions of the second order Hamiltonian systems with even superquadratic or subquadratic potentials. The author proves that in the subquadratic case, there exist infinite geometrically distinct elliptic periodic solutions, and in the superquadratic case, there exist infinite geometrically distinct periodic solutions with at most one instability direction if they are half period non-degenerate, otherwise they are elliptic.展开更多
It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally pe...It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.展开更多
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.
文摘In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibourhood of the equilibrium points of the dynamical systems.
文摘In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibourhed of the equilibrium points of the dynamical systems.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.
文摘In this paper,we consider the dynamical system which are from general Hemilton systems under a disturbance,we use theories in Liapunov stability and show that there are not any periodic solutions in some a neighborhood of the equilibrium points of the dynamical systems.
基金Foundation item: Supported by the National Science Foundation of Hunan Provincial Education Department (06C792 07C700)
文摘The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guarantee the existence and global exponential stability of periodic attractor. Our results improve and extend some existing ones in [13-14]. One example is also worked out to demonstrate the advantages of our results.
文摘This paper studies the stability of the periodic solutions of the second order Hamiltonian systems with even superquadratic or subquadratic potentials. The author proves that in the subquadratic case, there exist infinite geometrically distinct elliptic periodic solutions, and in the superquadratic case, there exist infinite geometrically distinct periodic solutions with at most one instability direction if they are half period non-degenerate, otherwise they are elliptic.
文摘It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.