期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度全卷积神经网络的大田稻穗分割
被引量:
41
1
作者
段凌凤
熊雄
+2 位作者
刘谦
杨万能
黄成龙
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第12期202-209,共8页
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于...
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于Seg Net的网络,称为Panicle Net。在线分割阶段先将原始图像划分为子图,由Panicle Net分割子图,再拼接子图得到分割结果。比较该算法及现有作物果穗分割算法Panicle-SEG、HSeg、i2滞后阈值法及joint Seg,该算法对与训练样本同年度拍摄样本Qseg值0.76、F值0.86,不同年度样本Qseg值0.67、F值0.80,远优于次优的Panicle-SEG算法,且计算速度约为Panicle-SEG算法的35倍。该算法能克服稻穗边缘严重不规则、不同品种及生育期稻穗外观差异大、穂叶颜色混叠和复杂大田环境中光照、遮挡等因素的干扰,提升稻穗分割准确度及效率,进而服务于水稻育种栽培。
展开更多
关键词
作物
图像
分割
大田水稻
稻穗分割
深度学习
全卷积神经网络
在线阅读
下载PDF
职称材料
题名
基于深度全卷积神经网络的大田稻穗分割
被引量:
41
1
作者
段凌凤
熊雄
刘谦
杨万能
黄成龙
机构
华中农业大学工学院
华中科技大学武汉光电国家研究中心
华中农业大学作物遗传改良国家重点实验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第12期202-209,共8页
基金
国家自然科学基金资助项目(31701317
31600287)
+1 种基金
湖北省自然科学基金资助项目(2017CFB208)
国家重点研发计划课题子课题(2016YFD0100101-18)
文摘
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于Seg Net的网络,称为Panicle Net。在线分割阶段先将原始图像划分为子图,由Panicle Net分割子图,再拼接子图得到分割结果。比较该算法及现有作物果穗分割算法Panicle-SEG、HSeg、i2滞后阈值法及joint Seg,该算法对与训练样本同年度拍摄样本Qseg值0.76、F值0.86,不同年度样本Qseg值0.67、F值0.80,远优于次优的Panicle-SEG算法,且计算速度约为Panicle-SEG算法的35倍。该算法能克服稻穗边缘严重不规则、不同品种及生育期稻穗外观差异大、穂叶颜色混叠和复杂大田环境中光照、遮挡等因素的干扰,提升稻穗分割准确度及效率,进而服务于水稻育种栽培。
关键词
作物
图像
分割
大田水稻
稻穗分割
深度学习
全卷积神经网络
Keywords
crops
image segmentation
field rice
panicle segmentation
deep learning
full convolutional neural network
分类号
S126 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度全卷积神经网络的大田稻穗分割
段凌凤
熊雄
刘谦
杨万能
黄成龙
《农业工程学报》
EI
CAS
CSCD
北大核心
2018
41
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部