期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
精密位移动态测量信号特征辨识及细分新方法研究 被引量:11
1
作者 陈自然 刘小康 +1 位作者 郑永 刘浩 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第10期2224-2230,共7页
针对数字化精密机械测量仪器和装备需要解决位移传感器信号的高倍数、高精度细分问题,通过对光栅位移测量模型的研究提出采用测量基准转换的思维方式构建空间序列理论。通过对各运动状态条件下精密位移动态测量信号的多尺度分解实现特... 针对数字化精密机械测量仪器和装备需要解决位移传感器信号的高倍数、高精度细分问题,通过对光栅位移测量模型的研究提出采用测量基准转换的思维方式构建空间序列理论。通过对各运动状态条件下精密位移动态测量信号的多尺度分解实现特征辨识,从而构建用于动态位移信号细分的自适应预测模型及相关细分误差实时修正技术。实验研究表明此方法可以实现圆光栅栅距内400倍细分,角位移细分误差-0.19″~0.27″。 展开更多
关键词 位移测量 信号细分 空间序列理论 特征辨识 多尺度分解
在线阅读 下载PDF
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
2
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部