期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于属性相似性和分布结构连通性的聚类算法
1
作者 孙浩文 丁家满 +1 位作者 李博文 贾连印 《计算机科学》 CSCD 北大核心 2024年第7期124-132,共9页
聚类分析针对不同的数据特点采用不同的相似性度量,现实世界中数据分布复杂,存在分布无规律、密度不均匀等现象,单独考虑实例属性相似性或分布结构连通性会影响聚类效果。为此,提出了一种基于属性相似性和分布结构连通性的聚类算法(A Cl... 聚类分析针对不同的数据特点采用不同的相似性度量,现实世界中数据分布复杂,存在分布无规律、密度不均匀等现象,单独考虑实例属性相似性或分布结构连通性会影响聚类效果。为此,提出了一种基于属性相似性和分布结构连通性的聚类算法(A Clustering Algorithm Based on Attribute Similarity and Distributed Structure Connectivity, ASDSC)。首先,利用待聚类数据集中的所有数据实例构建完全无向图,定义了一种兼顾属性相似和分布结构连通的新颖相似性度量方式,用于计算节点相似性,并构造邻接矩阵更新边的权重;其次,借助邻接矩阵执行递增步长的随机游走,依据顶点的连通中心性来识别簇中心并给定簇编号,同时获取其他顶点的连通性;然后,利用连通性计算顶点间的依赖关系,并据此进行簇编号的传播,直至完成聚类。最后,为了验证该方法的聚类性能,在16个合成数据集和10个真实数据集上与5种先进聚类算法进行了对比实验,ASDSC算法取得了优异性能。 展开更多
关键词 聚类 相似性度量 属性相似性 分布结构连通性 簇编号传播
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部