期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
1
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
在线阅读 下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
2
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
在线阅读 下载PDF
粒子群优化的支持向量回归机计算配电网理论线损方法 被引量:33
3
作者 徐茹枝 王宇飞 《电力自动化设备》 EI CSCD 北大核心 2012年第5期86-89,93,共5页
针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理... 针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理论线损线路的数据样本训练学习生成配电网理论线损计算模型,进而利用该模型完成未知线路的理论线损计算。在SVR-PSO训练过程中,利用粒子群算法动态地搜索支持向量回归机的最优训练参数,提高了SVR-PSO的计算精度。最后横向对比实验证实了基于SVR-PSO的配电网理论线损计算方法的有效性,与传统方法相比,SVR-PSO方法在计算精度和运算耗时方面拥有更好的性能。 展开更多
关键词 配电网 线路 损耗 计算 粒子优化 多元回归分析 支持向量回归
在线阅读 下载PDF
基于粒子群优化支持向量回归机的黄金价格预测模型 被引量:6
4
作者 王芬 马涛 马旭 《兰州理工大学学报》 CAS 北大核心 2013年第3期65-69,共5页
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的... 为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测. 展开更多
关键词 粒子算法 支持向量回归 黄金价格 参数优化 统计学习理论
在线阅读 下载PDF
基于支持向量回归机和粒子群算法的改进协同优化方法 被引量:2
5
作者 杨希祥 杨慧欣 +1 位作者 江振宇 张为华 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期34-39,共6页
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群... 研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,和基本协同优化方法相比,求解精度高,优化迭代次数少,稳定性好.可为多学科设计优化研究提供理论参考. 展开更多
关键词 协同优化 支持向量回归 粒子算法
在线阅读 下载PDF
基于粒子群优化法的支持向量机回归对膛线加工切削力的预测 被引量:3
6
作者 刘洋 关世玺 沙业典 《工具技术》 北大核心 2022年第2期62-65,共4页
针对神经网络算法和支持向量机算法在膛线加工切削力预测过程存在的问题,基于粒子群优化法对支持向量机回归算法进行了改进。将实验得出的切削参数、切削力等数据输入到该算法模型中,训练得出最佳预测模型,进而用该模型进行切削力预测... 针对神经网络算法和支持向量机算法在膛线加工切削力预测过程存在的问题,基于粒子群优化法对支持向量机回归算法进行了改进。将实验得出的切削参数、切削力等数据输入到该算法模型中,训练得出最佳预测模型,进而用该模型进行切削力预测。经误差检验表明,该改进型算法的预测精度提升85%以上。 展开更多
关键词 粒子优化 支持向量回归 膛线加工 切削参数 切削力预测
在线阅读 下载PDF
基于粒子群优化支持向量回归机的渲染时间预估 被引量:3
7
作者 张冉 韩斌 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2017年第2期207-213,共7页
通过对使用V-Ray渲染器的渲染系统进行深入分析,提取出影响渲染时间的13个特征参数,研究了基于粒子群优化支持向量回归机(PSO-SVR)的渲染时间预估方法,采用粒子群算法随机搜索策略优化支持向量回归机的训练参数,获得了较优的支持向量回... 通过对使用V-Ray渲染器的渲染系统进行深入分析,提取出影响渲染时间的13个特征参数,研究了基于粒子群优化支持向量回归机(PSO-SVR)的渲染时间预估方法,采用粒子群算法随机搜索策略优化支持向量回归机的训练参数,获得了较优的支持向量回归机预测模型,实现渲染时间的准确预估.实验结果表明,在渲染时间预估中,PSO-SVR比BP神经网络和逐步回归预测精度高,并且具有较好的泛化能力. 展开更多
关键词 支持向量回归 粒子优化 渲染 渲染时间预估
在线阅读 下载PDF
粒子群支持向量机结合NIR测定桉木木质素 被引量:5
8
作者 于仕兴 李学春 +1 位作者 黄安民 王学顺 《东北林业大学学报》 CAS CSCD 北大核心 2013年第2期123-126,共4页
在支持向量机(SVM)回归分析过程中,参数(C,γ)取值范围较大,且需要人工进行调整,目前已知的参数选择方法复杂且不够精确。针对上述问题,提出了一种应用于木材近红外光谱分析的PSO-SVM回归模型;使用粒子群算法(PSO)确定SVM的最优参数(C,... 在支持向量机(SVM)回归分析过程中,参数(C,γ)取值范围较大,且需要人工进行调整,目前已知的参数选择方法复杂且不够精确。针对上述问题,提出了一种应用于木材近红外光谱分析的PSO-SVM回归模型;使用粒子群算法(PSO)确定SVM的最优参数(C,γ),用40个桉木近红外光谱样品作训练集,8个样品作测试集建立模型,得到预测模型的回归系数0.970 956,均方根误差0.002 154 5,并与传统支持向量机回归模型和偏最小二乘回归模型进行分析比较。结果表明,PSO-SVM回归模型在桉木近红外光谱的木质素含量预测中具有较高的准确性和很好的稳定性。 展开更多
关键词 支持向量 近红外光谱 粒子优化算法 木质素 回归
在线阅读 下载PDF
基于粒子群最小二乘支持向量机的水文预测 被引量:15
9
作者 李文莉 李郁侠 《计算机应用》 CSCD 北大核心 2012年第4期1188-1190,共3页
支持向量机理论为研究中长期水文预测提供了新的方法。针对最小二乘支持向量机模型参数选择费时且效果差这一问题,给出基于粒子群算法的最小二乘支持向量机水文预测模型(PSO-LSSVM)。该模型运用最小二乘支持向量机回归原理建立,参数选... 支持向量机理论为研究中长期水文预测提供了新的方法。针对最小二乘支持向量机模型参数选择费时且效果差这一问题,给出基于粒子群算法的最小二乘支持向量机水文预测模型(PSO-LSSVM)。该模型运用最小二乘支持向量机回归原理建立,参数选取采用具有全局搜索能力的粒子群算法进行寻优。用此模型对南桠河冶勒水电站月径流进行预测,仿真计算结果表明,该算法可提高预测效率与预测精度。 展开更多
关键词 最小二乘支持向量 粒子算法 水文预测 参数优化 回归
在线阅读 下载PDF
基于粒子群优化的支持向量回归的转炉脱磷预测模型
10
作者 武利梅 郝颖莉 袁帅杰 《中国宽带》 2021年第2期44-44,共1页
脱磷是钢铁生产过程中重要的一个环节,本文根据企业现场统计得到的大数据,结合基于粒子群优化的支持向量回归模型,研究分析了温度、炉渣碱度、高氧化物等因素对脱磷的影响。这可以为钢铁企业冶炼低磷钢和超低磷钢提供理论指导和技术依据。
关键词 粒子优化 支持向量回归 转炉脱磷
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
11
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 器学习 粒子优化支持向量回归(pso-svr)算法 承载力 敏感性分析
在线阅读 下载PDF
基于改进人工鱼群算法的支持向量机预测 被引量:14
12
作者 田海雷 李洪儒 许葆华 《计算机工程》 CAS CSCD 2013年第4期222-225,共4页
由于参数的选择范围较大,在多个参数中进行盲目搜索最优参数的时间代价较大,且很难得到最优参数。为此,提出一种基于改进人工鱼群算法(AFSA)的支持向量机(SVM)预测算法。对AFSA进行改进,并使用改进算法优化SVM。实验结果表明,与遗传算... 由于参数的选择范围较大,在多个参数中进行盲目搜索最优参数的时间代价较大,且很难得到最优参数。为此,提出一种基于改进人工鱼群算法(AFSA)的支持向量机(SVM)预测算法。对AFSA进行改进,并使用改进算法优化SVM。实验结果表明,与遗传算法、粒子群优化算法和基本AFSA优化的支持向量机相比,该算法的均方误差降低为2.51×10 3,提高了预测精度。 展开更多
关键词 支持向量 人工鱼算法 参数优化 回归模型 遗传算法 粒子优化
在线阅读 下载PDF
基于粒子群优化SVR-ARMA组合模型频率预测 被引量:3
13
作者 刘哲 丁阳 严加宝 《振动.测试与诊断》 EI CSCD 北大核心 2020年第2期374-380,423,共8页
为实现环境激励下复杂钢结构的损伤预警,提出一种基于粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector regression,简称SVR)-时间序列(auto-regressive and moving average model,简称ARMA)组合模型用... 为实现环境激励下复杂钢结构的损伤预警,提出一种基于粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector regression,简称SVR)-时间序列(auto-regressive and moving average model,简称ARMA)组合模型用于频率预测,并结合均值控制图法将其用于复杂钢结构的损伤预警中。所提出频率预测模型的准确性和有效性采用潍坊市白浪河摩天轮钢结构实测数据进行验证。验证结果表明:与基本SVR模型、SVR-ARMA模型和PSO-SVR模型相比,所提模型具有更高的泛化能力和预测精度;在白浪河摩天轮钢结构的损伤预警中,基于粒子群优化的SVR-ARMA组合模型可检出由损伤造成模态频率轻微的异常变化,具有较强的损伤敏感性。研究成果可为环境激励下复杂钢结构的损伤预警提供参考。 展开更多
关键词 粒子优化 模态频率 支持向量回归-时间序列组合模型 结构损伤预警
在线阅读 下载PDF
基于自适应粒子群优化的ARIMA-SVM光功率趋势预测 被引量:4
14
作者 陈晓娟 李思洋 王圣达 《光通信技术》 北大核心 2015年第4期22-25,共4页
为实现光纤线路未来状态趋势预测,提出基于自适应粒子群优化(APSO)的ARIMA-SVM光功率趋势预测法。利用小波变换对光功率数据进行预处理,设计APSO算法优化SVM模型参数,构建了优化后的ARIMA-SVM模型,实现了光功率趋势预测。
关键词 光功率预测 自适应粒子优化 动态距离 差分自回归移动平均 支持向量
在线阅读 下载PDF
基于改进支持向量机回归的非线性飞机结构载荷模型建模 被引量:4
15
作者 唐宁 白雪 《航空工程进展》 CSCD 2020年第5期694-700,共7页
为进行飞机结构载荷安全监控并为飞机结构疲劳寿命评估积累相关数据,需建立与飞行参数相关的飞机结构载荷模型。针对飞机结构载荷与飞行参数之间的非线性关系,采用改进停机准则的SMO算法及粒子群模型参数优化算法对支持向量机回归方法... 为进行飞机结构载荷安全监控并为飞机结构疲劳寿命评估积累相关数据,需建立与飞行参数相关的飞机结构载荷模型。针对飞机结构载荷与飞行参数之间的非线性关系,采用改进停机准则的SMO算法及粒子群模型参数优化算法对支持向量机回归方法进行改进,并通过飞行动力学理论分析结合皮尔逊相关系数的方法对参与建模的飞行参数进行选取。以飞机跨声速俯仰机动为例,建立机翼某一测载剖面结构剪力模型,并对该建模方法进行仿真验证。结果表明:采用改进支持向量机回归方法所建立模型精度优于原始支持向量机回归方法建立的模型,即采用改进支持向量机回归方法可提高建模精度及泛化能力。 展开更多
关键词 结构载荷 支持向量回归 SMO算法 粒子优化算法
在线阅读 下载PDF
基于支持向量回归机的股票价格预测 被引量:13
16
作者 谢国强 《计算机仿真》 CSCD 北大核心 2012年第4期379-382,共4页
研究股票价格预测问题,股票价格变化具有非线性、时变性,传统线性预测模型难以准确刻画股价变化规律,且非线性神经网络存在过拟合、局部最小等缺陷,预测精度比较低。为提高股票价格预测精度,提出一种基于粒子群优化支持向量机的股票价... 研究股票价格预测问题,股票价格变化具有非线性、时变性,传统线性预测模型难以准确刻画股价变化规律,且非线性神经网络存在过拟合、局部最小等缺陷,预测精度比较低。为提高股票价格预测精度,提出一种基于粒子群优化支持向量机的股票价格预测模型。利用粒子群算法良好的寻优能力,对支持向量机参数进行优化,加快支持向量机学习速度,再采用非线性预测能力优异的支持向量机对股票价格进行预测。以南天信息股票价格对模型性能进行仿真,实验结果证明,支持向量机预测模型能全面反映股票价格变化的非线性的时变规律,获得更高预测精度,预测结果对股民实际操作具有较大的指导价值。 展开更多
关键词 支持向量回归 股价预测 粒子优化算法
在线阅读 下载PDF
应用支持向量回归机探索发动机VSV调节规律 被引量:6
17
作者 曹惠玲 阚玉祥 薛鹏 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第7期1371-1377,共7页
发动机可调静子叶片(VSV)调节规律极其复杂,通过挖掘快速存取记录装置(QAR)数据对VSV调节规律进行了深入研究。首先,通过PW4077D发动机健康状态的QAR数据,建立基于粒子群优化(PSO)算法的支持向量回归机(SVR)模型,来探索VSV调节规律;然后... 发动机可调静子叶片(VSV)调节规律极其复杂,通过挖掘快速存取记录装置(QAR)数据对VSV调节规律进行了深入研究。首先,通过PW4077D发动机健康状态的QAR数据,建立基于粒子群优化(PSO)算法的支持向量回归机(SVR)模型,来探索VSV调节规律;然后,利用后续航班数据对PSO-SVR模型进行验证,并将验证结果与传统的PSO-BP神经网络模型进行对比;最后,应用PSO-SVR模型进行发动机故障诊断。研究结果表明:PSOSVR模型的回归预测精度优于PSO-BP神经网络模型,能够准确反映VSV的调节规律。可将其用于发动机的状态监控和故障诊断,亦可为VSV控制系统设计提供参考。 展开更多
关键词 发动可调静子叶片(VSV) 调节规律 支持向量回归(SVR) 粒子优化(PSO)算法 快速存取记录装置(QAR)数据 故障诊断
在线阅读 下载PDF
基于支持向量回归机的HHT边界效应处理 被引量:4
18
作者 李雪耀 张汝波 王武 《智能系统学报》 2007年第3期39-44,共6页
针对希尔伯特-黄变换中的边界效应,提出了基于支持向量回归机的时间序列预测方法.在支持向量回归机的应用当中,参数的选取对它的泛化性能有很大影响.在讨论了参数对支持向量回归机的泛化性能的影响基础上,提出了通过微粒群优化算法来优... 针对希尔伯特-黄变换中的边界效应,提出了基于支持向量回归机的时间序列预测方法.在支持向量回归机的应用当中,参数的选取对它的泛化性能有很大影响.在讨论了参数对支持向量回归机的泛化性能的影响基础上,提出了通过微粒群优化算法来优化支持向量回归机参数的方法,使得支持向量回归机在应用中能够自适应的选择最优参数,从而获得了更好的泛化性能,提高了在端点处的延拓精度,很好地抑制了端点效应.试验表明,该优化算法能够很好解决支持向量回归机的参数选取问题.通过与神经网络的延拓方法和黄等人的HHTDPS结果对比,基于支持向量回归机的时间序列预测方法可以更好地解决在希尔伯特-黄变换中存在的边界效应,得到的固有模态函数具有较小的失真. 展开更多
关键词 边界效应 希尔伯特-黄变换 支持向量回归 微粒优化
在线阅读 下载PDF
基于改进支持向量回归机的锂离子电池剩余寿命预测 被引量:12
19
作者 王一宣 李泽滔 《汽车技术》 CSCD 北大核心 2020年第2期28-32,共5页
为提高电动汽车锂离子电池剩余循环寿命预测的准确性,提出了一种基于改进支持向量回归机的预测算法,利用免疫完全学习型粒子群优化算法对支持向量回归机的惩罚系数和超参数进行优化,增强其预测能力,基于NASA PCoE研究中心提供的锂电池... 为提高电动汽车锂离子电池剩余循环寿命预测的准确性,提出了一种基于改进支持向量回归机的预测算法,利用免疫完全学习型粒子群优化算法对支持向量回归机的惩罚系数和超参数进行优化,增强其预测能力,基于NASA PCoE研究中心提供的锂电池测量数据,与完全学习型粒子群优化的支持向量回归机预测算法进行对比分析,仿真结果显示,本文提出的算法预测相对误差低于6%,容量预测平均相对误差低于0.4%,具有更好的预测性能。 展开更多
关键词 锂离子电池 剩余循环寿命 支持向量回归 粒子优化 人工免疫算法 完全学习
在线阅读 下载PDF
基于支持向量回归机的矿井气体定量分析研究
20
作者 张偲敏 郭天太 +1 位作者 洪博 孙睿 《科技创新导报》 2015年第35期95-96,共2页
矿井气体的定量分析对于是实现矿井安全实时检测反馈的基础。采用傅里叶变换红外光谱法获取甲烷、乙烷等5种煤矿井气体的光谱数据,并基于支持向量回归机(SVR)建立非线性回归模型,对未知样本进行定量分析。使用SVR对气体红外光谱进行定... 矿井气体的定量分析对于是实现矿井安全实时检测反馈的基础。采用傅里叶变换红外光谱法获取甲烷、乙烷等5种煤矿井气体的光谱数据,并基于支持向量回归机(SVR)建立非线性回归模型,对未知样本进行定量分析。使用SVR对气体红外光谱进行定量分析时,惩罚系数和核参数的选择直接决定了算法的精度和耗时。该文分别采用网格搜索法、遗传算和及粒子群算法对SVR模型的重要参数对进行优化,并比较上述3种算法优化后的模型性能。结果表明:3种算法的回归精度基本都能达到10-4,但预测精度差异较大。其中,粒子群算法计算时间较短,最小均方差为2×10-4,能达到较高的精度,在实践中值得推广。 展开更多
关键词 矿井气体 红外吸收光谱 支持向量回归 参数优化 粒子算法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部