期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
基于VMD精细复合多尺度散布熵和SABO-SVM的滚动轴承故障诊断
1
作者 姜薇 季瑞青 +1 位作者 王青庆 顾磊 《电工技术》 2025年第3期159-163,共5页
为解决电机轴承故障特征提取困难以及故障诊断率低的问题,提出了一种变分模态分解(VMD)联合精细复合多尺度散布熵的电机轴承故障特征提取方法。首先,将电机电流信号的总谐波畸变率和电机振动信号一同进行VMD多层分解;之后,依据局部最小... 为解决电机轴承故障特征提取困难以及故障诊断率低的问题,提出了一种变分模态分解(VMD)联合精细复合多尺度散布熵的电机轴承故障特征提取方法。首先,将电机电流信号的总谐波畸变率和电机振动信号一同进行VMD多层分解;之后,依据局部最小包络熵准则遴选最优IMF分量,并求取其5个尺度下的精细复合多尺度散布熵,从而构成特征向量矩阵;最后,将减法平均优化算法输入优化支持向量机中。实验表明,该方法对多种轴承故障的诊断准确率达94.3%,与PSO-SVM、SSA-SVM方法相比更具优越性。 展开更多
关键词 变分模态分解 精细复合多尺度散布熵 减法平均优化算法 支持向量机
在线阅读 下载PDF
基于精细复合多尺度散布熵的抗蛇行减振器故障诊断 被引量:2
2
作者 岑潮宇 代亮成 +3 位作者 池茂儒 赵明花 郭兆团 曾鹏程 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4334-4343,共10页
抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble... 抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与精细复合多尺度散布熵结合的故障诊断方法。首先采用CEEMDAN分解信号得到本征模态函数(Intrinsic mode function,IMF),计算精细复合多尺度散布熵组成特征集,然后融合多个通道振动信号特征并用核主成分分析法进行降维,将降维后的特征集分成训练集和测试集,最后输入到改进麻雀算法优化的支持向量机模型中进行训练与诊断。为验证方法的可行性,以机车滚动振动试验台模拟列车运行的不同速度,设置抗蛇行减振器故障工况,通过转向架和车体多个位置传感器获得试验数据进行分析。研究结果表明,经过优选的特征集能更好地捕捉抗蛇行减振器故障的特征信息,与未经优选的特征集相比故障诊断结果正确率有所提升;多通道融合特征的方法与单通道相比反映故障信息更加全面,补偿了单一通道诊断结果精确度低的不足,进一步提高了故障诊断结果正确率;改进麻雀算法优化了模型参数,解决了参数设计的盲目性,提高了模型分类识别能力,并与其他算法相比验证了优越性。运用该方法对抗蛇行减振器进行故障诊断,能够有效诊断出抗蛇行减振器故障类型,为抗蛇行减振器故障诊断提供了一种新的方法。 展开更多
关键词 抗蛇行减振器 故障诊断 改进麻雀算法 精细复合多尺度散布熵 支持向量机
在线阅读 下载PDF
基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断 被引量:18
3
作者 何玉灵 孙凯 +2 位作者 王涛 王晓龙 唐贵基 《电力自动化设备》 EI CSCD 北大核心 2021年第3期164-172,共9页
针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量... 针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量进行信号的重构,应用精细复合多尺度散布熵来进行重构信号的分类及故障识别。对3对极发电机匝间短路故障前、后定子振动数据的处理效果表明,所提方法可以对发电机匝间短路故障进行有效识别与诊断,与其他多尺度熵方法相比具有一定优越性。 展开更多
关键词 多对极发电机 匝间短路故障 振动信号 变分模态分解 精细复合多尺度散布熵 故障诊断
在线阅读 下载PDF
基于精细复合多尺度散布熵与XGBoost的海面小目标检测方法 被引量:3
4
作者 王海峰 行鸿彦 +2 位作者 陈梦 赵迪 李瑾 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期12-20,共9页
针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XG... 针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XGBoost网络进行特征分类,通过模型训练,实现海面小目标检测。利用IPIX雷达实测数据库,在#54、#311、#320海情HV极化方式下检测率分别达到了93.33%、92.38%、95%,相较于图连通密度检测法平均提升12%,证明了RCMDE-XGBoost检测方法有效。 展开更多
关键词 精细复合多尺度散布熵 XGBoost 微弱信号检测 海杂波
在线阅读 下载PDF
基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法 被引量:68
5
作者 李从志 郑近德 +1 位作者 潘海洋 刘庆运 《中国机械工程》 EI CAS CSCD 北大核心 2019年第14期1713-1719,1726,共8页
为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新... 为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新方法.通过滚动轴承实验数据分析,将所提方法与基于多尺度样本熵和多尺度散布熵的故障诊断方法进行了对比,结果表明:所提方法不仅能精确地识别滚动轴承故障类型和故障程度,而且故障识别率高于另两种方法. 展开更多
关键词 散布 多尺度样本 精细复合多尺度散布熵 滚动轴承 故障诊断
在线阅读 下载PDF
基于精细复合多尺度散布熵的墙体内管道敲击探测方法
6
作者 李瑾 行鸿彦 +2 位作者 王海峰 吴叶丽 陈梦 《电子测量技术》 北大核心 2023年第2期25-30,共6页
为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过... 为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过模型训练,完成墙内埋设管道有无的分类,提出了基于精细复合多尺度散布熵的墙体内管道敲击探测方法。将此方法与其它信号处理方法进行对比分析,结果证明,本文所提方法探测准确率高达97%,远远高于其他两种方法。 展开更多
关键词 管道探测 SSA-SVM 敲击声音 精细复合多尺度散布熵
在线阅读 下载PDF
基于精细复合多尺度散布熵的高压断路器机械故障诊断方法 被引量:5
7
作者 陈佳豪 吴浩 +2 位作者 李栋 杨杰 刘益岑 《四川轻化工大学学报(自然科学版)》 CAS 2021年第4期40-47,共8页
针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据... 针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据采集。对采集到的数据计算RCMDE值,并构成特征向量集,将特征向量集分作训练集及测试集。利用粒子群算法(PSO)优化后的极限学习机(ELM)训练训练集得到智能故障识别模型,将测试集输入模型进行测试,实现断路器机械故障诊断。结果表明,基于RCMDE-PSO-ELM的高压断路器机械故障诊断方法能有效识别不同状态的机械故障,并且在噪声干扰以及数据丢失下仍能对故障进行准确识别,具有很好的抗干扰能力,在背景干扰较强的高压断路器故障检测环境下具备一定的实用性。 展开更多
关键词 高压断路器 机械故障诊断 振动信号 精细复合多尺度散布熵 粒子群算法 极限学习机
在线阅读 下载PDF
基于改进EWT-精细复合多尺度散布熵和GG聚类的球磨机负荷识别方法 被引量:5
8
作者 罗小燕 郁慧 +1 位作者 方正沛 陈晟 《噪声与振动控制》 CSCD 2020年第6期52-58,66,共8页
针对球磨机振动信号具有非线性、非平稳性特点所导致的负荷状态难以识别问题,提出一种基于改进经验小波变换(EWT)、精细复合多尺度散布熵(RCMDE)和GG聚类的球磨机负荷识别方法。首先,在EWT的基础上,引入滑动频率窗的思想,提出自适应频率... 针对球磨机振动信号具有非线性、非平稳性特点所导致的负荷状态难以识别问题,提出一种基于改进经验小波变换(EWT)、精细复合多尺度散布熵(RCMDE)和GG聚类的球磨机负荷识别方法。首先,在EWT的基础上,引入滑动频率窗的思想,提出自适应频率窗EWT算法,将其用于对球磨机原始振动信号的分解以获得本征模态分量;其次,通过相关系数法选出能表征原始信号状态的敏感模态分量进行信号重构;第三,利用RCMDE对重构信号进行处理提取负荷状态特征;最后,将特征向量作为GG聚类算法的输入,将球磨机负荷状态作为输出,建立球磨机负荷识别模型。通过磨矿实验验证了该方法的有效性,结果表明,该方法的聚类内紧致性较好,识别的评价指标PC值最高可达0.9989,而CE值仅为0.0013,识别效果显著,能够准确识别球磨机的负荷状态。 展开更多
关键词 振动与波 负荷识别 精细合法多尺度散布 GG聚类 经验小波变换 相关系数
在线阅读 下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估 被引量:2
9
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布 累积欧氏距离矩阵测度
在线阅读 下载PDF
精细复合多尺度波动散布熵在液压泵故障诊断中的应用 被引量:25
10
作者 姜万录 赵亚鹏 +1 位作者 张淑清 李满 《振动与冲击》 EI CSCD 北大核心 2022年第8期7-16,共10页
液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复... 液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复合多尺度波动散布熵(refined composite multiscale fluctuation dispersion entropy,RCMFDE)引入到液压泵的故障特征提取中,提出了一种基于RCMFDE和粒子群优化支持向量机结合的液压泵故障诊断方法。计算不同故障振动信号的RCMFDE,并选取合适尺度下的多个RCMFDE值作为特征向量形成特征样本,输入粒子群优化支持向量机中进行故障分类识别。通过仿真信号和液压泵故障实测信号进行分析,并将所提出的方法与基于多尺度样本熵(multiscale sample entropy,MSE)、多尺度排列熵(multiscale permutation entropy,MPE)、多尺度符号动态熵(multiscale symbolic dynamic entropy,MSDE)、多尺度散布熵(multiscale dispersion entropy,MDE)、精细复合多尺度散布熵(refined composite multiscale dispersion entropy,RCMDE)、多尺度波动散布熵(multiscale fluctuation dispersion entropy,MFDE)的故障特征提取方法进行对比。试验结果表明,该方法能够更加准确地识别多类液压泵故障并能对液压泵性能退化程度进行有效评估。 展开更多
关键词 波动散布 精细复合多尺度波动散布(RCMFDE) 粒子群优化支持向量机 故障诊断 液压泵
在线阅读 下载PDF
精细广义复合多元多尺度反向散布熵及其在滚动轴承故障诊断中的应用 被引量:9
11
作者 郑近德 陈焱 +1 位作者 童靳于 潘海洋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第11期1315-1325,共11页
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道... 多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。 展开更多
关键词 精细广义复合多多尺度反向散布 滚动轴承 故障诊断 特征提取
在线阅读 下载PDF
基于广义精细复合多尺度散布熵的机车轮对轴承智能诊断方法 被引量:3
12
作者 陆毅 《机械设计与研究》 CSCD 北大核心 2022年第4期119-124,137,共7页
针对机车轮对轴承单一与复合故障在内的不同健康状况的识别问题,引入一种基于精细复合多尺度散布熵改进的非线性动力学分析方法—广义精细复合多尺度散布熵。该方法解决了熵值波动大、计算不准确的问题,在计算过程中能获取更多有效信息... 针对机车轮对轴承单一与复合故障在内的不同健康状况的识别问题,引入一种基于精细复合多尺度散布熵改进的非线性动力学分析方法—广义精细复合多尺度散布熵。该方法解决了熵值波动大、计算不准确的问题,在计算过程中能获取更多有效信息。将之与灰狼算法优化的支持向量机结合,提出了一种机车轮对轴承智能诊断方法。为验证其效果,本文采用南昌铁路局实际机车轮对轴承数据进行实验,得到结论:所提方法识别准确率明显高于多尺度散布熵与精细复合多尺度散布熵的方法,而且能精确地识别复合故障以及不同程度故障,具有较大实际意义。 展开更多
关键词 轮对轴承 广义精细复合多尺度散布熵 灰狼算法 支持向量机 故障诊断
原文传递
基于经验模态分解的精细复合多尺度排列熵癫痫脑电信号分类方法
13
作者 梁袁泽 张学军 《智能计算机与应用》 2024年第5期44-51,共8页
癫痫是一种常见的脑部疾病,通过脑电图能准确地定位人脑中的致痫区域。文章提出一种基于经验模态分解的精细复合多尺度排列熵的癫痫脑电信号自动检测方法,用于解决区分致痫区和非致痫区的癫痫脑电信号难的问题。首先将原信号分割成多个... 癫痫是一种常见的脑部疾病,通过脑电图能准确地定位人脑中的致痫区域。文章提出一种基于经验模态分解的精细复合多尺度排列熵的癫痫脑电信号自动检测方法,用于解决区分致痫区和非致痫区的癫痫脑电信号难的问题。首先将原信号分割成多个子信号,并对各子信号进行经验模态分解,然后从分解后的不同经验模态函数中提取精细复合多尺度排列熵特征并利用支持向量机进行分类。通过对癫痫脑电的公共数据集测试,实验结果表明准确率、灵敏度和特异度三个性能指标分别达到90.3%,85.0%和96.0%,ROC曲线下面积达0.98。 展开更多
关键词 癫痫 经验模态分解 精细复合多尺度排列 支持向量机
在线阅读 下载PDF
基于变分模态分解和精细复合多尺度均值散布熵的轴承故障诊断 被引量:8
14
作者 张婕 张梅 陈万利 《机电工程》 CAS 北大核心 2023年第5期682-690,共9页
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通... 为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。 展开更多
关键词 轴承故障诊断 变分模态分解 精细复合多尺度均值散布 鲸鱼算法 支持向量机 超参数寻优
在线阅读 下载PDF
基于改进精细复合多尺度归一化散布熵的生物组织变性识别
15
作者 刘备 蔡剑华 +1 位作者 杨江河 彭梓齐 《传感技术学报》 CAS CSCD 北大核心 2023年第11期1761-1767,共7页
在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性... 在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性特征。为了解决上述问题,提出了基于改进精细复合多尺度归一化散布熵(IRCMNDE)的生物组织变性识别方法。引入RCMDE,将其传统粗粒化过程中的平均值计算替换为最大值计算以解决MDE传统粗粒化过程中的问题,突出信号变性特征。通过对熵值的归一化处理减弱不同参数选择导致的熵值波动,形成IRCMNDE方法。将所提方法应用于实测HIFU回波信号数据,并采用概率神经网络(PNN)进行识别。研究结果表明:相较于MPE、MDE和RCMDE方法,基于IRCMNDE的生物组织变性识别率更高,高达96.77%,能更好地区分未变性与变性生物组织。 展开更多
关键词 HIFU 改进精细复合多尺度归一化散布 生物组织 变性识别
在线阅读 下载PDF
基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究 被引量:13
16
作者 王宏伟 孙文磊 +1 位作者 张小栋 何丽 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期288-295,共8页
以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。... 以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。首先将时域信号转换至角域;然后通过AGWO-VMD方法对角域信号进行自适应分解,并采用NCMDE算法提取分解后及原始信号中的故障特征构成特征向量;最后利用LSTM模型对特征向量进行智能识别与分类。对实际采集的6种故障齿轮信号进行测试与验证,试验结果表明该方法能快速有效区分齿轮故障类型。 展开更多
关键词 风力机 齿轮箱 故障检测 灰狼优化算法 变分模态分解 复合多尺度规范化散布 长短期记忆网络
在线阅读 下载PDF
基于精细复合多尺度模糊熵的往复压缩机轴承间隙故障特征分析方法 被引量:14
17
作者 王金东 陈新 +3 位作者 赵海洋 贾川 陈桂娟 雷勇 《机床与液压》 北大核心 2021年第16期185-190,共6页
针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征... 针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征。白噪声和1/f噪声仿真信号分析结果表明:RCMFE熵值对数据长度不敏感,未定义熵出现概率小。以往复压缩机传动机构轴承间隙故障为研究对象,应用RCMFE实现其故障信号特征提取,并与多尺度模糊熵、复合多尺度模糊熵进行对比,该方法特征区分度显著,支持向量机故障识别准确率高于其他方法。 展开更多
关键词 精细复合多尺度模糊 往复压缩机 滑动轴承 故障诊断
在线阅读 下载PDF
复合多尺度散布熵在滚动轴承故障诊断中的应用 被引量:14
18
作者 郑近德 李从志 潘海洋 《噪声与振动控制》 CSCD 2018年第A02期653-656,共4页
为了提取滚动轴承的非线性故障特征,将复合多尺度散布熵应用于滚动轴承故障特征提取,提出1种基于复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法,并将所提方法应用于滚动轴承实验数据分析。通过与多尺度散布熵和多尺度熵进行对比... 为了提取滚动轴承的非线性故障特征,将复合多尺度散布熵应用于滚动轴承故障特征提取,提出1种基于复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法,并将所提方法应用于滚动轴承实验数据分析。通过与多尺度散布熵和多尺度熵进行对比,结果表明:论文提出的故障诊断方法不仅能够准确地诊断滚动轴承的故障类型和程度,而且识别率优于所对比的方法。 展开更多
关键词 振动与波 多尺度 复合多尺度散布 滚动轴承 故障诊断
在线阅读 下载PDF
基于精细复合多尺度熵与支持向量机的睡眠分期 被引量:10
19
作者 叶仙 胡洁 +3 位作者 田畔 戚进 车大钿 丁颖 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第3期321-326,共6页
提出将脑电信号与眼动信号的精细复合多尺度熵作为睡眠分期依据,利用多层次支持向量机的机器学习算法对睡眠进行自动分期.利用精细复合多尺度熵对睡眠信号进行特征提取,选用脑电以及眼电通道的信号,以保证输入特性的可靠性,并通过3层支... 提出将脑电信号与眼动信号的精细复合多尺度熵作为睡眠分期依据,利用多层次支持向量机的机器学习算法对睡眠进行自动分期.利用精细复合多尺度熵对睡眠信号进行特征提取,选用脑电以及眼电通道的信号,以保证输入特性的可靠性,并通过3层支持向量机实现了睡眠的自动分期.结果表明,分类器的输入参数可由熵值曲线的变化特征来确定.基于精细复合多尺度熵的多层次支持向量机算法的睡眠分期准确率达到85.3%,与已有的分类算法相比,所提出的算法更加均衡,且整体分类效果更佳. 展开更多
关键词 睡眠分期 精细 复合多尺度
在线阅读 下载PDF
基于精细复合多尺度熵和自编码的滚动轴承故障诊断方法 被引量:12
20
作者 郑近德 潘海洋 +3 位作者 包家汉 刘庆运 丁克勤 欧淑彬 《噪声与振动控制》 CSCD 2019年第2期175-180,193,共7页
多尺度熵是一种有效衡量机械振动信号复杂度的非线性动力学方法。针对其存在的不足,引入精细复合多尺度熵(Refined composite multiscale entropy, RCMSE),在此基础上,结合自编码降维和遗传优化支持向量机,提出一种滚动轴承故障智能诊... 多尺度熵是一种有效衡量机械振动信号复杂度的非线性动力学方法。针对其存在的不足,引入精细复合多尺度熵(Refined composite multiscale entropy, RCMSE),在此基础上,结合自编码降维和遗传优化支持向量机,提出一种滚动轴承故障智能诊断新方法。首先,利用RCMSE提取滚动轴承振动信号多尺度复杂度特征,构建初始特征向量矩阵;其次,采用自编码对初始高维特征数据降维,得到低维流形特征;然后,将低维特征向量输入到基于遗传优化支持向量机的多故障模式分类器中进行训练、识别与诊断。最后,将所提方法应用于实验数据分析,并与多尺度熵方法进行对比,结果表明,该方法不仅能够有效诊断滚动轴承的工作状态和故障类型,而且识别率高于所对比方法。 展开更多
关键词 故障诊断 多尺度 精细复合多尺度 特征降维 滚动轴承
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部