Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo...Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.展开更多
Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research...Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research status of the combined cycle engine technology,including basic principle,research programs and classification of structure is firstly discussed in this paper.Then the bilevel hierarchical and integrated parameters/trajectory overall optimization technologies are applied to improve the efficiency and effectiveness of overall vehicle design.Simulations are implemented to compare and analyze the effectiveness and adaptability of the two algorithms,in order to provide the technical reserves and beneficial references for further research on combined cycle engine reusable launch vehicles.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61271262,61473047 and 61572083in part by Shaanxi Provincial Natural Science Foundation under Grant 2015JM6310in part by the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University 310824152010 and 0009-2014G1241043
文摘Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.
文摘Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research status of the combined cycle engine technology,including basic principle,research programs and classification of structure is firstly discussed in this paper.Then the bilevel hierarchical and integrated parameters/trajectory overall optimization technologies are applied to improve the efficiency and effectiveness of overall vehicle design.Simulations are implemented to compare and analyze the effectiveness and adaptability of the two algorithms,in order to provide the technical reserves and beneficial references for further research on combined cycle engine reusable launch vehicles.