A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performan...A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.展开更多
A distributed polarization-mode coupling measurement system was designed and implemented using white light interferometry. It can be used for the measurement of polarization mode coupling in a high-birefringence fiber...A distributed polarization-mode coupling measurement system was designed and implemented using white light interferometry. It can be used for the measurement of polarization mode coupling in a high-birefringence fiber of up to i km. This system can be used in both fiber-optic sensors and optical fiber communications. Wavelet Transform was adopted in data processing to improve the signal-noise-ratio. The signal-noise-ratio of this system was improved more than 15 dB after denoising. The influence of denoising threshold on signal-noise-ratio and measurement accuracy was also discussed. Hilbert Transform and non-linear regression can be used in conjunction with Wavelet Transform to enhance the signal-noise-ratio and spatial resolution of this system.展开更多
We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external fo...We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external forcing. The expression of the signal-to-noise ratio (SNR) for a bacterium growth system is derived by using the theory of SNR in the adiabatic limit. Based on SNR, we discuss the effects of self-correlation time τ1 and τ2, cross-correlation time 3-3 and cross-correlation strength λ on the SNR. It is found that the self-correlation time τ1 and τ2, and cross-correlation strength λ enhance the SR of the bacterium growth system, while cross-correlation time τ3 weakens the SR of the bacterium growth system.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This d...This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.展开更多
We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult...We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.展开更多
To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Bloc...To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.展开更多
An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude seri...An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude series is designed based on quantitative BER analysis of the specific A×M APPM demapping procedures containing time slot selection and amplitude decision in selected time slot,which are different from traditional ones.Simulation results of 4×4,4×8 and 4×16 APPM show 4,3.4 and 6.9 d B SNR gain against traditional APPM scheme respectively.Thus significant BER performance improvement is achieved which helps to enhance reliability of freespace optical communication systems.展开更多
The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approx...The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J.Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time T between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time T between the Gaussian additive colored noise is, the higher of the peak value of SNR.展开更多
In CSMA/CN, whenever inferring that a receiving frame gets corrupted, the receiver sends back its signature as a collision notification(CN) to the sender. Upon detecting an arrival of the CN, the sender will abort the...In CSMA/CN, whenever inferring that a receiving frame gets corrupted, the receiver sends back its signature as a collision notification(CN) to the sender. Upon detecting an arrival of the CN, the sender will abort the ongoing transmission immediately. However, in low signal-to-interference-plus-noise ratio(SINR), the false alarm of the CN occurs frequently, which might force a sender not to transmit any frame at all. To overcome this drawback, this paper proposes CSMA/CN+ to enhance the performance of CSMA/CN. In CSMA/CN+, we introduce an additional signature. The receiver, adapting to channel conditions and self-signal suppression capability, prudently determines whether to send back zero, one, or two signatures to the sender. In this way, we can reduce or exclude false alarms and therefore improve the system performance. In this paper, we first present the design of CSMA/CN+. We then apply the design in a wireless LAN, and theoretically analyze the detection performance of the notification and the system throughput. Extensive simulations verify that CSMA/CN+ can remarkably improve the system throughput of CSMA/CN and our analysis is very accurate.展开更多
文摘A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.
基金the National Natural Science Fundof China (No. 60377031), the National Basic Research Program ofChina (No. 2003CB314907), and the Program for New Century Ex-cellent Talents in University
文摘A distributed polarization-mode coupling measurement system was designed and implemented using white light interferometry. It can be used for the measurement of polarization mode coupling in a high-birefringence fiber of up to i km. This system can be used in both fiber-optic sensors and optical fiber communications. Wavelet Transform was adopted in data processing to improve the signal-noise-ratio. The signal-noise-ratio of this system was improved more than 15 dB after denoising. The influence of denoising threshold on signal-noise-ratio and measurement accuracy was also discussed. Hilbert Transform and non-linear regression can be used in conjunction with Wavelet Transform to enhance the signal-noise-ratio and spatial resolution of this system.
基金Supported by the Natural Science Foundation of Yunnan Province under Grant Nos.2005A0080m-2 and 08C0235the Key Subjects Fund for Condensed Physics of Qujing Normal University
文摘We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external forcing. The expression of the signal-to-noise ratio (SNR) for a bacterium growth system is derived by using the theory of SNR in the adiabatic limit. Based on SNR, we discuss the effects of self-correlation time τ1 and τ2, cross-correlation time 3-3 and cross-correlation strength λ on the SNR. It is found that the self-correlation time τ1 and τ2, and cross-correlation strength λ enhance the SR of the bacterium growth system, while cross-correlation time τ3 weakens the SR of the bacterium growth system.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
基金Supported by the National Natural Science Foundation of China(No.61271230,61301107)the Fundamental Research Funds for the Central Universities(No.30920130122004)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)
文摘This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.
基金Supported by Chinese 863 Program (2006AA01Z268)the National Natural Science Foundation of China (No. 60496311)
文摘We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.
文摘To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.
基金financial supports from National High Technology 863 Program of China(No.2012AA011304)National International Technology Cooperation(No.2012DFG12110)+5 种基金National NSFC(No.61275158/61201151/61275074)Beijing Nova Program( No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003)the Fundamental Research Funds for the Central Universities with No.2014RC0203Fund of State Key Laboratory of IPOC(BUPT)
文摘An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude series is designed based on quantitative BER analysis of the specific A×M APPM demapping procedures containing time slot selection and amplitude decision in selected time slot,which are different from traditional ones.Simulation results of 4×4,4×8 and 4×16 APPM show 4,3.4 and 6.9 d B SNR gain against traditional APPM scheme respectively.Thus significant BER performance improvement is achieved which helps to enhance reliability of freespace optical communication systems.
文摘The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J.Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time T between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time T between the Gaussian additive colored noise is, the higher of the peak value of SNR.
基金supported by the Macao FDCTMOST grant 001/2015/AMJMacao FDCT grants 056/2017/A2 and 005/2016/A1
文摘In CSMA/CN, whenever inferring that a receiving frame gets corrupted, the receiver sends back its signature as a collision notification(CN) to the sender. Upon detecting an arrival of the CN, the sender will abort the ongoing transmission immediately. However, in low signal-to-interference-plus-noise ratio(SINR), the false alarm of the CN occurs frequently, which might force a sender not to transmit any frame at all. To overcome this drawback, this paper proposes CSMA/CN+ to enhance the performance of CSMA/CN. In CSMA/CN+, we introduce an additional signature. The receiver, adapting to channel conditions and self-signal suppression capability, prudently determines whether to send back zero, one, or two signatures to the sender. In this way, we can reduce or exclude false alarms and therefore improve the system performance. In this paper, we first present the design of CSMA/CN+. We then apply the design in a wireless LAN, and theoretically analyze the detection performance of the notification and the system throughput. Extensive simulations verify that CSMA/CN+ can remarkably improve the system throughput of CSMA/CN and our analysis is very accurate.