地下储气库(以下简称储气库)老井封堵施工,因井况复杂、动态交互性强,存在井筒窜气及封堵失效等高风险隐患。现有封堵井施工风险评价方法多依赖定性分析,难以量化关键因素间的非线性影响,且传统决策试验和评价实验室(DEMATEL)方法存在...地下储气库(以下简称储气库)老井封堵施工,因井况复杂、动态交互性强,存在井筒窜气及封堵失效等高风险隐患。现有封堵井施工风险评价方法多依赖定性分析,难以量化关键因素间的非线性影响,且传统决策试验和评价实验室(DEMATEL)方法存在主观偏差问题。为此,基于模糊集理论改进DEMATEL算法,通过量化专家判断与引入原因度—中心度权重优化机制,构建了从系统级事故到不安全控制行为(UCA)的动态因果路径;然后结合概率阈值判定与多级风险传递分析,实现关键风险因素的定量排序与演化机理解析,最后建立了一种融合模糊逻辑与系统理论过程分析(Systematic Theory Process Analysis, STPA)的多尺度风险评价模型。研究结果表明:(1)融合改进的模糊DEMATEL与系统理论过程分析(STPA)方法能有效量化关键风险因素,通过引入原因度和中心度优化权重计算,显著降低了主观偏差,改进后方法的皮尔逊积矩(Pearson)相关系数优于传统模糊DEMATEL;(2)改进后的多级分析能对多个相互影响的风险因素进行多尺度的风险评价,确定不同风险因素的优化权重、相互间的因果关系、整体概率分布和传递路径;(3)多级风险传递路径分析揭示了不安全控制行为动态演化机制。结论认为,案例验证识别结果与施工现场实际风险高度吻合,该方法可以有效识别关键风险因素,且能够克服专家评价的模糊性与不确定性,为储气库老井封堵施工系统精准风险管控提供了理论和技术支撑。展开更多
随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面...随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。展开更多
文摘地下储气库(以下简称储气库)老井封堵施工,因井况复杂、动态交互性强,存在井筒窜气及封堵失效等高风险隐患。现有封堵井施工风险评价方法多依赖定性分析,难以量化关键因素间的非线性影响,且传统决策试验和评价实验室(DEMATEL)方法存在主观偏差问题。为此,基于模糊集理论改进DEMATEL算法,通过量化专家判断与引入原因度—中心度权重优化机制,构建了从系统级事故到不安全控制行为(UCA)的动态因果路径;然后结合概率阈值判定与多级风险传递分析,实现关键风险因素的定量排序与演化机理解析,最后建立了一种融合模糊逻辑与系统理论过程分析(Systematic Theory Process Analysis, STPA)的多尺度风险评价模型。研究结果表明:(1)融合改进的模糊DEMATEL与系统理论过程分析(STPA)方法能有效量化关键风险因素,通过引入原因度和中心度优化权重计算,显著降低了主观偏差,改进后方法的皮尔逊积矩(Pearson)相关系数优于传统模糊DEMATEL;(2)改进后的多级分析能对多个相互影响的风险因素进行多尺度的风险评价,确定不同风险因素的优化权重、相互间的因果关系、整体概率分布和传递路径;(3)多级风险传递路径分析揭示了不安全控制行为动态演化机制。结论认为,案例验证识别结果与施工现场实际风险高度吻合,该方法可以有效识别关键风险因素,且能够克服专家评价的模糊性与不确定性,为储气库老井封堵施工系统精准风险管控提供了理论和技术支撑。
文摘随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。