In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characterist...In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characteristic is discovered first up to now.On the basis of the survey_line systematic error model,the formulae of the rank_defect adjustment model are deduced according to modern adjustment theory.An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi_systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.展开更多
Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concen...Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon, and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.展开更多
This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presen...This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method.展开更多
Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitatio...Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitations. We analyzed an inertial navi-gation system intended to guide the movement a shearer and designed a self-positioning device for the shearer. Simulation tests were also performed on the system. We analyzed the errors observed in these tests to show that the main reason for the low preci-sion of the self-positioning system is accumulated error in the inertial sensor. A Kalman filtering algorithm used in combination with the shearer motion model effectively reduces the measurement errors of the self-positioning system by compensating for gyroscopic drift. Finally, we built an error compensation model to reduce accumulated errors using continuous correction to provide self-positioning of the shearer within a certain range of accuracy.展开更多
Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to resear...Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.展开更多
Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivate...Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable.展开更多
A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization metho...A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization method is provided to resolve this rank defect problem by estimating some combinations of the unknowns rather than the unknowns themselves. The reparameterization of SD and ZD functional models is discussed in detail with their stochastic models. The theoretical confirmation of the equivalence of undifferenced and differenced models is described in a straightforward way. The relationship between SD and ZD residuals is given and verified for some special purposes, e.g. research on the stochastical properties of GPS observations.展开更多
文摘In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characteristic is discovered first up to now.On the basis of the survey_line systematic error model,the formulae of the rank_defect adjustment model are deduced according to modern adjustment theory.An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi_systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .40 0 71 0 68) .
文摘Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon, and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.
文摘This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50504014), is gratefully acknowledged
文摘Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitations. We analyzed an inertial navi-gation system intended to guide the movement a shearer and designed a self-positioning device for the shearer. Simulation tests were also performed on the system. We analyzed the errors observed in these tests to show that the main reason for the low preci-sion of the self-positioning system is accumulated error in the inertial sensor. A Kalman filtering algorithm used in combination with the shearer motion model effectively reduces the measurement errors of the self-positioning system by compensating for gyroscopic drift. Finally, we built an error compensation model to reduce accumulated errors using continuous correction to provide self-positioning of the shearer within a certain range of accuracy.
文摘Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)+1 种基金the Natural Science Foundation of Zhejiang Province(LQ15F030006)and the Science and Technology Program Project of Zhejiang Province(2015C33033)
文摘Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable.
文摘A series of advantages of single difference (SD) and undifferenced (ZD) models are given as compared with the double difference (DD) model. However, rank defects exist in SD and ZD models. The reparameterization method is provided to resolve this rank defect problem by estimating some combinations of the unknowns rather than the unknowns themselves. The reparameterization of SD and ZD functional models is discussed in detail with their stochastic models. The theoretical confirmation of the equivalence of undifferenced and differenced models is described in a straightforward way. The relationship between SD and ZD residuals is given and verified for some special purposes, e.g. research on the stochastical properties of GPS observations.