AIM: To investigate the anti-fibrosis effect of the tissue transglutarninase (tTG) specific inhibitor cystarnine on liver fibrosis. METHODS: Sixty-eight male Sprague Dawley rats were divided into three groups: no...AIM: To investigate the anti-fibrosis effect of the tissue transglutarninase (tTG) specific inhibitor cystarnine on liver fibrosis. METHODS: Sixty-eight male Sprague Dawley rats were divided into three groups: normal control, liver fibrosis control and cystamine-treated group. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and Cystarnine was administrated by intraperitoneal injection starting 2 d before the first administration of CCl4. Animals in each group were further divided into 2 subgroups according to two time points of 4 wk and 8 wk after treatment. Hepatic function, pathological evaluation (semi-quantitative scoring system, SSS) and liver hydroxyproline (Hyp) content were examined. Real-time PCR was used to detect the expression of tTG, smooth muscle alpha actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1) and collagen-1 mRNA. The expressions of tTG and α-SMA protein were detected by Western Blotting. RESULTS: Eight weeks after treatment, the SSS score of liver was significantly less in the cystamine group than that in the fibrosis control group (P 〈 0.01). The levels of alanine arninotransferase (ALT) and total bile acid (TBA) at the 4 wk and 8 wk time points were decreased in the cystamine group compared with those in fibrosis controls (P 〈 0.01). Liver hydroxyproline content at the 4 wk and 8 wk time points showed a substantial reduction in the cystamine group compared to fibrosis controls (P 〈 0.01). The expression of tTG, α-SMA, collagen-1, TIMP-1 mRNA and tTG, as well as α-SMA protein was downregulated in the cystamine group compared to fibrosis controls. CONCLUSION: Cystamine can ameliorate CCl4 induced liver fibrosis and protect hepatic function. The possible mechanism is related to the reduced synthesis of the extracellular matrix (ECM) caused by the inhibition of hepatic stellate cell activation and decreased expression of TIMP-1.展开更多
A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only cohe...A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only coherent and turbulent properties as well as their relations, but also the transitional states between convection dominating, diffusion dominating and dispersion dominating are analyzed to demonstrate the essential characteristics of any state. Numerical results show that the models are capable of simulating both layered coupling and stochastic mechanism, and lead us to understand whether or not turbulence coherent structure is formed by modulation of wave packet. The duality of wave and particle characters of turbulence is illustrated in the numerical simulation; a sketch picture is given to explain the questions associated with the turbulent inverse cascade, which is the result of the mutual interactions among the physical factors of nonlinearity, dissipation and dispersion.展开更多
In this paper, by the help of evolutionary algorithm and using Hindmarsh-Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neu...In this paper, by the help of evolutionary algorithm and using Hindmarsh-Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Phrthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme.展开更多
基金Supported by National Natural Science Foundation of China,No. 30571825
文摘AIM: To investigate the anti-fibrosis effect of the tissue transglutarninase (tTG) specific inhibitor cystarnine on liver fibrosis. METHODS: Sixty-eight male Sprague Dawley rats were divided into three groups: normal control, liver fibrosis control and cystamine-treated group. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and Cystarnine was administrated by intraperitoneal injection starting 2 d before the first administration of CCl4. Animals in each group were further divided into 2 subgroups according to two time points of 4 wk and 8 wk after treatment. Hepatic function, pathological evaluation (semi-quantitative scoring system, SSS) and liver hydroxyproline (Hyp) content were examined. Real-time PCR was used to detect the expression of tTG, smooth muscle alpha actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1) and collagen-1 mRNA. The expressions of tTG and α-SMA protein were detected by Western Blotting. RESULTS: Eight weeks after treatment, the SSS score of liver was significantly less in the cystamine group than that in the fibrosis control group (P 〈 0.01). The levels of alanine arninotransferase (ALT) and total bile acid (TBA) at the 4 wk and 8 wk time points were decreased in the cystamine group compared with those in fibrosis controls (P 〈 0.01). Liver hydroxyproline content at the 4 wk and 8 wk time points showed a substantial reduction in the cystamine group compared to fibrosis controls (P 〈 0.01). The expression of tTG, α-SMA, collagen-1, TIMP-1 mRNA and tTG, as well as α-SMA protein was downregulated in the cystamine group compared to fibrosis controls. CONCLUSION: Cystamine can ameliorate CCl4 induced liver fibrosis and protect hepatic function. The possible mechanism is related to the reduced synthesis of the extracellular matrix (ECM) caused by the inhibition of hepatic stellate cell activation and decreased expression of TIMP-1.
基金supported by National Natural Science Foundation of China under Grant No.40535025
文摘A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only coherent and turbulent properties as well as their relations, but also the transitional states between convection dominating, diffusion dominating and dispersion dominating are analyzed to demonstrate the essential characteristics of any state. Numerical results show that the models are capable of simulating both layered coupling and stochastic mechanism, and lead us to understand whether or not turbulence coherent structure is formed by modulation of wave packet. The duality of wave and particle characters of turbulence is illustrated in the numerical simulation; a sketch picture is given to explain the questions associated with the turbulent inverse cascade, which is the result of the mutual interactions among the physical factors of nonlinearity, dissipation and dispersion.
基金Supported by the National Natural Science,and Special Found for the Theoretical Physics of China under Grant Nos.11275186,21103002,11047017the Special Foundation of Education of Anhui Province for Excellent Young Scientists under Grant No.2011SQRL023
文摘In this paper, by the help of evolutionary algorithm and using Hindmarsh-Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Phrthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme.