Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chem...Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chemical vapor deposition in the absence of catalysts. The fine microstructures of the HPCs were characterized by high-resolution transmission electron microscopy. The results show that the textural features of the HPCs directly transfer from turbostratic structure in roots to a well-ordered high texture in stems. And the degree of high texture ordering decreases gradually from the stem to the tail of the HPCs. The formation mechanism of the HPCs was inferred as the comprehensive effect of polarization induction on electromagnetic fields and particle-filler property under disruptive discharge.展开更多
Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the ...Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the crystal property of 12CaO·7Al2O3 (C12A7) cell were studied. The results show that the minerals containing Na2O mainly include 2Na2O·3CaO·5Al2O3 and Na2O·Al2O3, when the Na2O content in clinkers is less than 4.26% (mass fraction). The rest of Na2O is mainly doped in 12CaO·7Al2O3, which results in the decrease of the crystallinity of 12CaO·7Al2O3. The crystallinity of 2Na2O·3CaO·5Al2O3 is also inversely proportional to the Na2O content in clinkers. The formation processes of 2Na2O·3CaO·5Al2O3 and 12CaO·7Al2O3 can be divided into two ways, which are the direct reactions of raw materials and the transformation of CaO·Al2O3, respectively. The simulation shows that the covalency of O-Na bond in Na2O-doped 12CaO·7Al2O3 cell is weaker than those of O-Ca and O-Al bonds. The free energy of the unit cell increases because of Na2O doping, which results in the improvement of chemical activity of 12CaO·7Al2O3. The leaching efficiency of Al2O3 in clinker is improved from 34.81% to 88.17% when the Na2O content in clinkers increases from 0 to 4.26%.展开更多
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr...The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.展开更多
The physical characteristics of coal reservoirs are important for evaluating the potential for gas desorption, diffusion, and seepage during coalbed methane (CBM) production, and influence the performance of CBM wel...The physical characteristics of coal reservoirs are important for evaluating the potential for gas desorption, diffusion, and seepage during coalbed methane (CBM) production, and influence the performance of CBM wells. Based on data from mercury injection experiments, low-temperature liquid nitrogen adsorption, isothermal adsorption, initial velocity tests of methane diffusion, and gas natural desorption data from a CBM field, herein the physical characteristics of reservoirs of high-rank coals with different coal-body structures are described, including porosity, adsorption/desorption, diffusion, and seepage. Geometric models are constructed for these reservoirs. The modes of diffusion are discussed and a comprehensive diffusion-seepage model is constructed. The following conclusions were obtained. First, the pore distribution of tectonically deformed coal is different from that of normal coal. Compared to normal coal, all types of pore, including micropores (〈10 nm), transitional pores (10-100 nm), mesopores (100-1000 nm), and macropores (〉1000 nm), are more abundant in tectonically deformed coal, especially mesopores and macropores. The increase in pore abundance is greater with increasing tectonic deformation of coal; in addition, the pore connectivity is altered. These are the key factors causing differences in other reservoir physical characteristics, such as adsorption/desorption and diffusion in coals with different coal-body structures. Second, normal and cataclastic coals mainly contain micropores. The lack of macropores and its bad connectivity limit gas desorption and diffusion during the early stage of CBM production. However, the good connectivity of micropores is favorable for gas desorption and diffusion in later gas production stage. Thus, because of the slow decline in the rate of gas desorption, long-term gas production can easily be obtained from these reservoirs. Third, under natural conditions the adsorption/desorption properties of granulated and mylonitized coal are good, and the diffusion ability is also enhanced. However, for in situ reservoir conditions, the high dependence of reservoir permeability on stress results in a weak seepage of gas; thus, desorption and diffusion is limited. Fourth, during gas production, the pore range in which transitional diffusion takes place always increases, but that for Fick diffusion decreases. This is a reason for the reduction in diffusion capacity, in which micropores and transitional pores are the primary factors limiting gas diffusion. Finally, the proposed comprehensive model of CBM production under in situ reservoir conditions elucidates the key factors limiting gas production, which is helpful for selection of reservoir stimulation methods.展开更多
基金Project (2011CB605801) supported by the National Basic Research Program of ChinaProject (2011M500127) supported by the China Postdoctoral Science Foundation+1 种基金Projects (50802115, 51102089) supported by the National Natural Science Foundation of ChinaProject supported by the Postdoctoral Fund of the Central South University, China
文摘Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chemical vapor deposition in the absence of catalysts. The fine microstructures of the HPCs were characterized by high-resolution transmission electron microscopy. The results show that the textural features of the HPCs directly transfer from turbostratic structure in roots to a well-ordered high texture in stems. And the degree of high texture ordering decreases gradually from the stem to the tail of the HPCs. The formation mechanism of the HPCs was inferred as the comprehensive effect of polarization induction on electromagnetic fields and particle-filler property under disruptive discharge.
基金Projects(51174054,51104041,51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities of China
文摘Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the crystal property of 12CaO·7Al2O3 (C12A7) cell were studied. The results show that the minerals containing Na2O mainly include 2Na2O·3CaO·5Al2O3 and Na2O·Al2O3, when the Na2O content in clinkers is less than 4.26% (mass fraction). The rest of Na2O is mainly doped in 12CaO·7Al2O3, which results in the decrease of the crystallinity of 12CaO·7Al2O3. The crystallinity of 2Na2O·3CaO·5Al2O3 is also inversely proportional to the Na2O content in clinkers. The formation processes of 2Na2O·3CaO·5Al2O3 and 12CaO·7Al2O3 can be divided into two ways, which are the direct reactions of raw materials and the transformation of CaO·Al2O3, respectively. The simulation shows that the covalency of O-Na bond in Na2O-doped 12CaO·7Al2O3 cell is weaker than those of O-Ca and O-Al bonds. The free energy of the unit cell increases because of Na2O doping, which results in the improvement of chemical activity of 12CaO·7Al2O3. The leaching efficiency of Al2O3 in clinker is improved from 34.81% to 88.17% when the Na2O content in clinkers increases from 0 to 4.26%.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA07007003)the National Natural Science Foundation of China (No. 51661019)+4 种基金the Program for Major Projects of Science and Technology in Gansu Province, China (No. 145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology, Chinathe Incubation Program of Excellent Doctoral Dissertation, Lanzhou University of Technology, Chinathe Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fundthe State Key Laboratory of Cooperation and Exchange Fund。
文摘The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.
基金supported by the National Natural Science Foundation of China(Grant No.41372162)the Science and Technology Innovation Team Support Plan of Henan Province(Grant No.14IRTSTHN002)
文摘The physical characteristics of coal reservoirs are important for evaluating the potential for gas desorption, diffusion, and seepage during coalbed methane (CBM) production, and influence the performance of CBM wells. Based on data from mercury injection experiments, low-temperature liquid nitrogen adsorption, isothermal adsorption, initial velocity tests of methane diffusion, and gas natural desorption data from a CBM field, herein the physical characteristics of reservoirs of high-rank coals with different coal-body structures are described, including porosity, adsorption/desorption, diffusion, and seepage. Geometric models are constructed for these reservoirs. The modes of diffusion are discussed and a comprehensive diffusion-seepage model is constructed. The following conclusions were obtained. First, the pore distribution of tectonically deformed coal is different from that of normal coal. Compared to normal coal, all types of pore, including micropores (〈10 nm), transitional pores (10-100 nm), mesopores (100-1000 nm), and macropores (〉1000 nm), are more abundant in tectonically deformed coal, especially mesopores and macropores. The increase in pore abundance is greater with increasing tectonic deformation of coal; in addition, the pore connectivity is altered. These are the key factors causing differences in other reservoir physical characteristics, such as adsorption/desorption and diffusion in coals with different coal-body structures. Second, normal and cataclastic coals mainly contain micropores. The lack of macropores and its bad connectivity limit gas desorption and diffusion during the early stage of CBM production. However, the good connectivity of micropores is favorable for gas desorption and diffusion in later gas production stage. Thus, because of the slow decline in the rate of gas desorption, long-term gas production can easily be obtained from these reservoirs. Third, under natural conditions the adsorption/desorption properties of granulated and mylonitized coal are good, and the diffusion ability is also enhanced. However, for in situ reservoir conditions, the high dependence of reservoir permeability on stress results in a weak seepage of gas; thus, desorption and diffusion is limited. Fourth, during gas production, the pore range in which transitional diffusion takes place always increases, but that for Fick diffusion decreases. This is a reason for the reduction in diffusion capacity, in which micropores and transitional pores are the primary factors limiting gas diffusion. Finally, the proposed comprehensive model of CBM production under in situ reservoir conditions elucidates the key factors limiting gas production, which is helpful for selection of reservoir stimulation methods.