期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于编码-解码结构的多阶段图像去雨滴方法
1
作者 谷坤源 贾宗璞 +2 位作者 赵珊 庞晓艳 张鹏 《计算机应用研究》 CSCD 北大核心 2023年第9期2875-2880,共6页
针对附着镜头或玻璃表面的雨滴会造成图像退化的问题,提出了一种多阶段渐进式图像去雨滴方法。整个去雨滴过程被分解为多个更易于实现的阶段。首先在每个阶段设计多尺度融合的编码—解码网络以学习雨滴特征,通过构建带有门控循环单元的... 针对附着镜头或玻璃表面的雨滴会造成图像退化的问题,提出了一种多阶段渐进式图像去雨滴方法。整个去雨滴过程被分解为多个更易于实现的阶段。首先在每个阶段设计多尺度融合的编码—解码网络以学习雨滴特征,通过构建带有门控循环单元的多尺度扩张卷积来细化内部传递的空间特征。然后引入无降维的通道注意力机制对特定空间特征下的通道信息进行提取。最后为加强每个阶段各部分之间的信息交换,采用跨阶段特征融合机制,在每个阶段的编码—解码网络之间加入横向连接,以实现特征信息的横向传递。在每个阶段之间加入监督注意模块,以增强不同阶段之间的信息传递,最终渐进地实现雨滴的去除。实验表明该方法能够有效地去除雨滴。 展开更多
关键词 图像去雨滴 深度学习 编码解码结构 多尺度扩张卷积 通道注意力机制
在线阅读 下载PDF
基于编码器-解码器结构的路面平整度预测 被引量:2
2
作者 呙润华 于向前 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期1182-1190,共9页
提出了基于编码器‒解码器结构的路面平整度预测模型。对比分析了不同网络层的表现,并比较了网络层个数、隐藏节点数、数据时间窗口对模型精度的影响。在美国交通部公开的LTPP(long-term pavement performance)数据库的基础上构建了国际... 提出了基于编码器‒解码器结构的路面平整度预测模型。对比分析了不同网络层的表现,并比较了网络层个数、隐藏节点数、数据时间窗口对模型精度的影响。在美国交通部公开的LTPP(long-term pavement performance)数据库的基础上构建了国际平整度指数(IRI)数据集,并对模型进行了训练和评估。结果表明:采用门控循环单元(GRU)网络层的编码器‒解码器结构的预测性能最好,优于经典的机器学习模型XGBoost和单独长短期记忆(LSTM)网络。通过特征随机打乱的方式对不同输入特征的重要性进行了评估,结果显示路面结构和温度对于路面平整度预测比较重要,在数据库建设时应注意对这些数据的收集。 展开更多
关键词 路面平整度预测 编码器‒解码结构 长短期记忆(LSTM)网络 门控循环单元(GRU) 注意力机制
在线阅读 下载PDF
基于自编码器的红外与可见光图像融合算法
3
作者 陈海秀 房威志 +3 位作者 陆成 陆康 何珊珊 黄仔洁 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期283-290,共8页
针对目前红外与可见光图像融合过程中,图像特征提取不充分、中间层信息丢失以及融合图像细节不够清晰的问题,提出了一种基于自编码器的端到端图像融合网络结构。该网络由编码器、融合网络和解码器3部分组成。将高效通道注意力机制和混... 针对目前红外与可见光图像融合过程中,图像特征提取不充分、中间层信息丢失以及融合图像细节不够清晰的问题,提出了一种基于自编码器的端到端图像融合网络结构。该网络由编码器、融合网络和解码器3部分组成。将高效通道注意力机制和混合注意力机制引入到编码器和融合网络中,利用卷积残差网络(convolutional residual network,CRN)基本块来提取并融合红外图像和可见光图像的基本特征,然后将融合后的特征图输入到解码器进行解码,重建出融合图像。选取目前具有典型代表性的5种方法在主客观方面进行对比。在客观方面,较第2名平均梯度、空间频率和视觉保真度分别提升了21%、10.2%、7.2%。在主观方面,融合后的图像目标清晰、细节突出、轮廓明显,符合人类视觉感受。 展开更多
关键词 红外图像 可见光图像 图像融合 注意力机制 编码解码结构
在线阅读 下载PDF
DNeStCount:数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法
4
作者 孟晓龙 《计算机与现代化》 2022年第9期68-77,共10页
人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监... 人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监控的尺度变化和透视失真的挑战,将更密集的空洞采样比率应用到密集空洞空间金字塔池化模块DASPP设计中。为提升密度图估计的准确性,将可学习的、数据相关的上采样方法 DUpsampling应用到特征聚合模块DFA设计中。为弥补欧几里德损失可能存在对离群值敏感、训练不稳定等缺点,采用Smooth L1损失设计损失函数。在具有挑战性的数据集上进行的实验和分析表明,本文提出的人群计数方法 DNe St Count与其他主流方法相比更具有竞争力。 展开更多
关键词 人群计数 编码器-解码结构 拆分注意力机制 密集空洞空间金字塔池化 数据相关上采样 Smooth L1损失
在线阅读 下载PDF
编码-解码多尺度卷积神经网络人群计数方法 被引量:9
5
作者 孟月波 纪拓 +2 位作者 刘光辉 徐胜军 李彤月 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期149-157,共9页
针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感... 针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感受野并减少参数量,保留尺度特征和图像的上下文信息;解码器对编码器输出进行上采样,实现高层语义信息和编码器前端低层特征信息有效融合,从而提升了密度图的输出质量。为增强网络对计数的敏感性,在以往像素空间损失的基础上考虑了计数误差,提出了一种新型损失函数。采用Shanghai Tech、Mall以及自建数据集进行了对比实验,结果表明:与之前最优方法相比,所提方法在Shanghai Tech数据集Part_A部分的平均绝对误差和均方误差分别降低了8.3%和21.3%,Part_B部分分别降低了12.9%和12.0%,Mall数据集分别降低了15.1%和23.8%,自建数据集分别降低了13.5%和7.1%;在不同人群场景下,所提方法的人群计数准确性和鲁棒性均优于其他对比方法的。 展开更多
关键词 人群计数 编码-解码结构 多尺度 空洞空间金字塔池化 计数误差 损失函数
在线阅读 下载PDF
多层次编码—解码网络遥感图像建筑物分割 被引量:6
6
作者 何青 孟洋洋 李华智 《计算机应用研究》 CSCD 北大核心 2021年第8期2510-2514,共5页
为提高高分辨率遥感影像建筑物边缘提取精度和高分辨率特征利用率,提出了一种基于残差分组卷积的高分辨率遥感影像建筑物提取方法。利用多层次编码—解码结构提取影像中建筑物不同尺度特征,同层次特征之间引入密集连接保证高分辨率特征... 为提高高分辨率遥感影像建筑物边缘提取精度和高分辨率特征利用率,提出了一种基于残差分组卷积的高分辨率遥感影像建筑物提取方法。利用多层次编码—解码结构提取影像中建筑物不同尺度特征,同层次特征之间引入密集连接保证高分辨率特征的有效性,相邻层次特征之间引入交换单元增加不同深度的上下文信息交互。使用武汉大学建筑物数据集对模型进行训练及评估,与现有的全卷积神经网络SegNet、UNet和UNet++相比,评价指标recall、IoU、F 1等高出2%以上。实验结果表明该网络在对建筑物边缘精准提取方面具有很好的效果。 展开更多
关键词 高分辨率遥感影像 残差分组卷积 建筑物提取 编码解码结构 密集连接
在线阅读 下载PDF
基于双注意力编码-解码器架构的视网膜血管分割 被引量:3
7
作者 李天培 陈黎 《计算机科学》 CSCD 北大核心 2020年第5期166-171,共6页
眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-... 眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-解码器卷积神经网络的每个卷积层添加空间和通道注意力模块,加强模型对图像特征的空间信息和通道信息(如血管的大小、形态和连通性等特点)的利用,从而改善视网膜血管的分割效果。其中,空间注意力模块关注于血管的拓扑结构特性,而通道注意力模块关注于血管像素点的正确分类。此外,在训练过程中采用Dice损失函数解决了视网膜血管图像正负样本不均衡的问题。在3个公开的眼底图像数据库DRIVE,STARE和CHASE_DB1上进行了实验,实验数据表明,所提算法的准确率、灵敏度、特异性和AUC值均优于已有的视网膜血管分割方法,其AUC值分别为0.9889,0.9812和0.9831。实验证明,所提算法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。 展开更多
关键词 视网膜血管分割 通道注意力 空间注意力 编码-解码结构 特征可视化
在线阅读 下载PDF
基于编码-解码器架构的光场深度估计方法
8
作者 晏旭 马帅 +4 位作者 曾凤娇 郭正华 伍俊龙 杨平 许冰 《计算机科学》 CSCD 北大核心 2021年第10期212-219,共8页
针对现有光场深度估计方法存在的计算时间长和精度低的问题,提出了一种融合光场结构特征的基于编码-解码器架构的光场深度估计方法。该方法基于卷积神经网络,采用端到端的方式进行计算,一次输入光场图像就可获得场景视差信息,计算量远... 针对现有光场深度估计方法存在的计算时间长和精度低的问题,提出了一种融合光场结构特征的基于编码-解码器架构的光场深度估计方法。该方法基于卷积神经网络,采用端到端的方式进行计算,一次输入光场图像就可获得场景视差信息,计算量远低于传统方法,大大缩短了计算时间。为提高计算精确度,网络模型以光场图像的多方向极平面图堆叠体(Epipolar Plane Image Volume,EPI-volume)为输入,先利用多路编码模块对输入的光场图像进行特征提取,再使用带跳跃连接的编码-解码器架构进行特征聚合,使网络在逐像素视差估计时能够融合目标像素点邻域的上下文信息。此外,模型采取不同深度的卷积块从中心视角图中提取场景的结构特征,并将该结构特征引入对应的跳跃连接中,为视差图预测提供了额外的边缘特征参考,进一步提高了计算精确度。对HCI-4D光场基准测试集的实验结果表明,所提方法的坏像素率(BadPix)指标比对比方法降低了31.2%,均方误差(MSE)指标比对比方法降低了54.6%。对于基准测试集中的光场图像,深度估计的平均计算时间为1.2 s,计算速度远超对比方法。 展开更多
关键词 光场 深度估计 极平面图 编码-解码结构 上下文信息
在线阅读 下载PDF
基于频率与注意力机制的图像去雾算法
9
作者 王军 孟儒君 程勇 《计算机系统应用》 2025年第1期161-170,共10页
由于大气雾和气溶胶的存在,图像能见度显著下降且色彩失真,给高级图像识别带来极大困难.现有的图像去雾算法常存在过度增强、细节丢失和去雾不充分等问题.针对过度增强和去雾不充分的问题,本文提出了一种基于频率和注意力机制的图像去... 由于大气雾和气溶胶的存在,图像能见度显著下降且色彩失真,给高级图像识别带来极大困难.现有的图像去雾算法常存在过度增强、细节丢失和去雾不充分等问题.针对过度增强和去雾不充分的问题,本文提出了一种基于频率和注意力机制的图像去雾算法(frequency and attention mechanism of the image dehazing network,FANet).该算法采用编码器-解码器结构,通过构建双分支频率提取模块获取全局和局部的高低频信息.构建频率融合模块调整高低频信息的权重占比,并在下采样过程中引入附加通道-像素模块和通道-像素注意力模块,以优化去雾效果.实验结果显示,FANet在SOTS-indoor数据集上的PSNR和SSIM分别为40.07 dB和0.9958,在SOTS-outdoor数据集上分别为39.77 dB和0.9958.同时,该算法也在HSTS和Haze4k测试集上取得了不错的结果,与其他去雾算法相比有效缓解了颜色失真和去雾不彻底等问题. 展开更多
关键词 图像去雾 双分支频率提取模块 注意力机制 特征融合 编码器-解码结构
在线阅读 下载PDF
基于多输入多输出编解码器网络的图像去模糊
10
作者 许光宇 汪雨 《齐鲁工业大学学报》 CAS 2023年第6期16-23,共8页
针对动态场景下非均匀盲去模糊算法存在去模糊不彻底和纹理细节丢失的问题,提出了一种基于多输入多输出编解码器网络的图像去模糊方法。首先,采用一个特征提取模块获取不同尺度模糊图像的全局和局部特征信息,为网络提供更丰富、更全面... 针对动态场景下非均匀盲去模糊算法存在去模糊不彻底和纹理细节丢失的问题,提出了一种基于多输入多输出编解码器网络的图像去模糊方法。首先,采用一个特征提取模块获取不同尺度模糊图像的全局和局部特征信息,为网络提供更丰富、更全面的图像特征信息。其次,使用特征融合模块对多尺度特征进行融合,使不同尺度下的上下文特征与细节信息可以在单个U-net网络中流动,增强了特征信息的流动性,解决了传统方法中多个子网络堆叠导致特征流动受阻的问题。最后,设计了一个由L1损失、多尺度频率重建损失和边缘损失组成的混合损失函数,在提升图像复原效果的同时更好地保留纹理结构和边缘信息。为了评估网络去模糊性能,在基准数据集GoPro和HIDE上进行测试,复原图像的峰值信噪比均值分别为31.94、29.45 dB,结构相似度均值分别为0.961、0.936,均高于相比较的去模糊算法。在视觉效果上,恢复的图像纹理结构和边缘更清晰,更接近真实图像。所提出的网络模型能够获取更丰富的特征信息,增强了网络内部特征的流动能力,取得了较好的去模糊效果。 展开更多
关键词 图像去模糊 多尺度网络 编码-解码结构 特征融合 多输入多输出
在线阅读 下载PDF
基于改进SegNet的鸡只检测算法 被引量:1
11
作者 吉训生 孙贝贝 夏圣奎 《计算机工程与设计》 北大核心 2024年第1期102-109,共8页
为实现智能化检测出鸡场中死亡鸡只,提出一种基于改进语义分割模型AT-SegNet的鸡只检测算法。基于对称编码解码结构SegNet,利用空洞卷积在解码前聚合不同感受野的上下文信息,设计一种三尺度注意力级联融合模块,以并联方式嵌入编、解码器... 为实现智能化检测出鸡场中死亡鸡只,提出一种基于改进语义分割模型AT-SegNet的鸡只检测算法。基于对称编码解码结构SegNet,利用空洞卷积在解码前聚合不同感受野的上下文信息,设计一种三尺度注意力级联融合模块,以并联方式嵌入编、解码器间,丰富解码器信息。利用多层深度可分离卷积替代标准卷积,提取深层次语义信息,减少计算量提高实时性。将鸡群图像分割结果交并比与阈值对比判别鸡只状态。实验结果表明,改进的AT-SegNet较原算法的检测精度提高了25.17%,能够在复杂鸡群环境中准确、高效地发现死亡鸡只。 展开更多
关键词 深度学习 鸡只检测 语义分割 编码解码结构 注意力机制 软池化 深度可分离卷积
在线阅读 下载PDF
复杂背景下提出的改进卷积神经网络云检测方法
12
作者 高琳 盖晨曦 +1 位作者 芦偲俊 田育星 《计算机科学与应用》 2024年第3期66-77,共12页
对遥感影像云检测面临的下垫面复杂、厚云与雪的光谱特征相似导致同谱异物等复杂问题导致的传统的单类地物提取方法在云提取上效果不佳,提出了一种复杂背景下的改进卷积神经网络的遥感云检测方法MSANet。通过在浅层加入膨胀卷积以扩大... 对遥感影像云检测面临的下垫面复杂、厚云与雪的光谱特征相似导致同谱异物等复杂问题导致的传统的单类地物提取方法在云提取上效果不佳,提出了一种复杂背景下的改进卷积神经网络的遥感云检测方法MSANet。通过在浅层加入膨胀卷积以扩大首次感知野范围,同时关注整体结构特征传递,在解码部分加入包含多头“软”注意力的空间信息建模模块,增强了网络对全局信息的感知能力。使用ZY-3、38-cloud、GF1_WHU数据集上进行验证实验,实验结果表明该方法在复杂背景下云雪混淆的遥感影像上表现优秀,模型能够更好地应对复杂背景下的云检测任务,有效的提高了模型的精度。 展开更多
关键词 遥感 深度学习 编码解码结构 云提取
在线阅读 下载PDF
基于多尺度注意力的生成式信息隐藏算法
13
作者 刘丽 侯海金 +1 位作者 王安红 张涛 《计算机应用》 CSCD 北大核心 2024年第7期2102-2109,共8页
针对现有生成式信息隐藏算法嵌入容量低且提取的秘密图像视觉质量欠佳的问题,提出基于多尺度注意力的生成式信息隐藏算法。首先,设计基于多尺度注意力的双编码-单解码生成器,载体图像与秘密图像的特征在编码端分两个支路独立提取,在解... 针对现有生成式信息隐藏算法嵌入容量低且提取的秘密图像视觉质量欠佳的问题,提出基于多尺度注意力的生成式信息隐藏算法。首先,设计基于多尺度注意力的双编码-单解码生成器,载体图像与秘密图像的特征在编码端分两个支路独立提取,在解码端通过多尺度注意力模块进行融合,并利用跳跃连接为解码端提供不同尺度的细节特征,从而获得高质量的载密图像。其次,在U-Net结构的提取器中引入自注意力模块,以弱化载体图像特征、增强秘密图像深层特征,并利用跳跃连接弥补秘密图像细节特征,提高秘密信息提取的准确率;同时,多尺度判决器与生成器的对抗训练可以有效提升载密图像的视觉质量。实验结果表明,所提算法在嵌入容量为24 bpp的情况下,生成的载密图像峰值信噪比(PSNR)和结构相似性(SSIM)平均可达到40.93 dB和0.9883,且提取的秘密图像PSNR和SSIM平均可达到30.47 dB和0.9543。 展开更多
关键词 信息隐藏 注意力机制 多尺度 编码-解码结构 生成对抗网络
在线阅读 下载PDF
融合多尺度特征信息的图像雨滴去除方法 被引量:1
14
作者 崔明义 冯治国 +1 位作者 代建琴 赵雪峰 《微电子学与计算机》 2024年第4期74-84,共11页
针对雨滴使雨天图像背景特征模糊失真的问题,提出一种融合多尺度特征信息的图像雨滴去除算法。首先,搭建了一个编码-解码神经网络来学习图像特征映射,考虑到雨滴的物理形状特征,采用雨滴形状驱动注意力模块来捕捉雨滴位置。然后,引入空... 针对雨滴使雨天图像背景特征模糊失真的问题,提出一种融合多尺度特征信息的图像雨滴去除算法。首先,搭建了一个编码-解码神经网络来学习图像特征映射,考虑到雨滴的物理形状特征,采用雨滴形状驱动注意力模块来捕捉雨滴位置。然后,引入空间与通道协调注意力机制,加强图像重要空间和通道特征权重。接着,利用空洞卷积、非对称卷积和金字塔结构设计了新型空洞空间卷积池化金字塔模块,以捕获图像的多尺度特征。最后,在同尺度的编码-解码卷积层间加入跳跃连接,将特征信息馈送到网络深处,达到去除图像中雨滴的目的。实验结果表明:本文算法在公开数据集Qian上的PSNR达到30.75,SSIM达到0.9257;在自制雨天数据集上也可以有效去除图像中的雨滴。 展开更多
关键词 图像去雨 深度学习 空洞卷积 空间与通道协调注意力机制 编码-解码结构
在线阅读 下载PDF
编码—解码结构的语义分割 被引量:12
15
作者 韩慧慧 李帷韬 +2 位作者 王建平 焦点 孙百顺 《中国图象图形学报》 CSCD 北大核心 2020年第2期255-266,共12页
目的语义分割是计算机视觉中一项具有挑战性的任务,其核心是为图像中的每个像素分配相应的语义类别标签。然而,在语义分割任务中,缺乏丰富的多尺度信息和足够的空间信息会严重影响图像分割结果。为进一步提升图像分割效果,从提取丰富的... 目的语义分割是计算机视觉中一项具有挑战性的任务,其核心是为图像中的每个像素分配相应的语义类别标签。然而,在语义分割任务中,缺乏丰富的多尺度信息和足够的空间信息会严重影响图像分割结果。为进一步提升图像分割效果,从提取丰富的多尺度信息和充分的空间信息出发,本文提出了一种基于编码—解码结构的语义分割模型。方法运用Res Net-101网络作为模型的骨架提取特征图,在骨架末端附加一个多尺度信息融合模块,用于在网络深层提取区分力强且多尺度信息丰富的特征图。并且,在网络浅层引入空间信息捕获模块来提取丰富的空间信息。由空间信息捕获模块捕获的带有丰富空间信息的特征图和由多尺度信息融合模块提取的区分力强且多尺度信息丰富的特征图将融合为一个新的信息丰富的特征图集合,经过多核卷积块细化之后,最终运用数据依赖的上采样(DUpsampling)操作得到图像分割结果。结果此模型在2个公开数据集(Cityscapes数据集和PASCAL VOC 2012数据集)上进行了大量实验,验证了所设计的每个模块及整个模型的有效性。新模型与最新的10种方法进行了比较,在Cityscapes数据集中,相比于Refine Net模型、Deep Labv2-CRF模型和LRR(Laplacian reconstruction and refinement)模型,平均交并比(m Io U)值分别提高了0.52%、3.72%和4.42%;在PASCAL VOC2012数据集中,相比于Piecewise模型、DPN(deep parsing network)模型和GCRF(Gaussion conditional random field network)模型,m Io U值分别提高了6.23%、7.43%和8.33%。结论本文语义分割模型,提取了更加丰富的多尺度信息和空间信息,使得分割结果更加准确。此模型可应用于医学图像分析、自动驾驶、无人机等领域。 展开更多
关键词 语义分割 克罗内克卷积 多尺度信息 空间信息 注意力机制 编码解码结构 Cityscapes数据集 PASCAL VOC 2012数据集
原文传递
基于密集残差网络的图像隐藏方案
16
作者 陈立峰 刘佳 +2 位作者 潘晓中 孙文权 董炜娜 《科学技术与工程》 北大核心 2024年第9期3719-3726,共8页
针对基于编-解码器网络的图像隐写方案生成的含密图像和消息图像质量不高的问题,提出了一种新的基于密集残差连接的编码器-解码器隐写方案,与现有的端到端图像隐写网络不同,所提方案无须对图像进行预处理,采用密集残差连接,将浅层网络... 针对基于编-解码器网络的图像隐写方案生成的含密图像和消息图像质量不高的问题,提出了一种新的基于密集残差连接的编码器-解码器隐写方案,与现有的端到端图像隐写网络不同,所提方案无须对图像进行预处理,采用密集残差连接,将浅层网络的特征输送到深层网络结构的每一层,有效地保留了特征图的细节信息,并使用通道和空间注意力模块对特征进行筛选,提高了编-解码器对图像复杂纹理区域的关注度。在LFW、PASCAL-VOC12和ImageNet数据集的实验结果表明,在保证算法安全性的前提下,所提方法能够有效提高图像质量,含密图像和载体图像的峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)的平均值最高达到了36.2 dB和0.98。 展开更多
关键词 信息隐藏 深度学习 注意力机制 编码-解码结构 密集残差网络
在线阅读 下载PDF
跨尺度点匹配结合多尺度特征融合的图像配准
17
作者 欧卓林 吕晓琪 谷宇 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1090-1102,共13页
图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边... 图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边缘特征,且忽视了不同尺度上下文信息的关联。针对上述问题,本文提出了一种基于跨尺度点匹配结合多尺度特征融合的配准模型。首先,在模型的编码结构中引入跨尺度点匹配模块,增强对图像突出区域特征的表达以及对微小结构边缘细节特征的把握;然后,在解码结构中对多尺度特征进行融合,形成更全面的特征描述;最后,在多尺度特征融合模块中融入注意力模块,突出空间和通道的信息。在3个脑部核磁共振(Magnetic Resonance,MR)数据集上的实验结果表明,以OASIS-3数据集为例,本文方法的配准精确度相较于Affine、SyN、VoxelMorph以及CycleMorph等方法,本文方法分别提升了23.5%、12.4%、0.9%和2.1%;ASD值相较于各方法分别降低了1.074、0.434、0.043和0.076。本文提出的模型能更好地把握图像的特征信息,提升配准的精确度,对医学图像配准的发展具有重要意义。 展开更多
关键词 医学图像配准 编码器-解码结构 特征加权 特征匹配 注意力机制
在线阅读 下载PDF
基于跨层次聚合网络的实时城市街景语义分割
18
作者 侯志强 程敏婕 +2 位作者 马素刚 屈敏杰 杨小宝 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1212-1226,共15页
随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战... 随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战,主要表现为不同类别的像素区分不够清晰、对于复杂场景结构的理解不够精准以及对小尺度对象或大尺度结构的分割不准确等问题。为此,本文提出一种基于跨层次聚合网络的实时城市街景语义分割算法。首先,在编码器末端设计了结合跨层次聚合的金字塔池化模块,用于高效提取多尺度上下文信息;其次,在编码器和解码器之间设计了跨层次聚合模块,通过引入通道注意力机制增强信息的表征能力,逐级聚合编码器阶段的特征以充分实现特征复用;最后,在解码器阶段设计了多尺度融合模块,在通道维度聚合全局信息与局部信息,促进深层特征与浅层特征的融合。将所提算法在两个通用的城市街景数据集上进行了验证。在一张RTX3090显卡上(TensorRT测速环境),本文算法在Cityscapes测试集以294 FPS的实时性达到73.0%mIoU的准确性,在更高分辨率的图像上以164 FPS的实时性达到75.8%mIoU的准确性;在CamVid数据集以239 FPS的实时性达到74.8%mIoU的准确性。实验结果表明,本文算法在准确性与实时性之间取得了有效平衡,对比其他算法的语义分割性能具有显著提升,为实时城市街景语义分割领域带来了新的突破。 展开更多
关键词 语义分割 卷积神经网络 城市街景 编码器-解码结构 金字塔池化模块
在线阅读 下载PDF
基于Inception-Residual和生成对抗网络的水下图像增强 被引量:7
19
作者 王德兴 王越 袁红春 《液晶与显示》 CAS CSCD 北大核心 2021年第11期1474-1485,共12页
为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的... 为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的数据集。接着,将Inception模块、残差思想、编码解码结构和生成对抗网络相结合,构建IRGAN(Generative Adversarial Network with Inception-Residual)模型来增强水下图像。然后,利用全局相似性、内容感知和色彩感知构造多项损失函数,约束生成网络和判别网络的对抗训练。最后,通过训练好的模型对退化水下图像进行处理以获得清晰的水下图像。实验结果表明与现有增强方法相比,所提算法增强的水下图像在PSNR、UIQM和IE指标上的平均值分别比第二名提升13.6%、4.1%和0.9%。在主观感知和客观评估中,增强后的水下图像在清晰度、对比度增强和颜色校正方面均得到改善。 展开更多
关键词 图像处理 水下图像增强 Inception-Residual模块 编码解码结构 生成对抗网络
在线阅读 下载PDF
基于多尺度三重注意力的水下图像增强算法 被引量:1
20
作者 陈海秀 陆康 +2 位作者 何珊珊 黄仔洁 房威志 《电光与控制》 CSCD 北大核心 2023年第11期56-61,共6页
针对水下图像颜色失真和细节丢失等问题,提出了一种基于多尺度三重注意力机制的水下图像增强算法。该算法使用生成对抗网络作为基础架构,生成网络采用编码解码结构,并设计一个多尺度三重注意力模块,多尺度结构和三重注意力机制结合可以... 针对水下图像颜色失真和细节丢失等问题,提出了一种基于多尺度三重注意力机制的水下图像增强算法。该算法使用生成对抗网络作为基础架构,生成网络采用编码解码结构,并设计一个多尺度三重注意力模块,多尺度结构和三重注意力机制结合可以实现不同层次信息的跨维度交互,使网络更好地学习水下图像特征和抑制噪声特征,判别网络采用类似马尔可夫判别器的结构;构建了多个损失函数,使生成的图像在结构、内容、色彩上和参考图像保持一致。实验结果表明,所提算法在主观视觉和客观评价指标上均优于比较算法,可以有效地提升网络的特征提取能力,实现对不同场景水下图像的色彩恢复,增强图像的对比度和清晰度。 展开更多
关键词 水下图像增强 三重注意力 生成对抗网络 编码解码结构 多尺度结构
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部