A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is gr...A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.展开更多
In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairne...In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.展开更多
基金This work was supported by the State Key Program of Na- tional Nature Science Foundation of China under Grants No. U0835003, No. 60872087.
文摘A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.
基金supported by National Natural Science Foundation of China (61172079, 61231008, 61201141, 61301176)111 Project (B08038)+1 种基金National S&T Major Project (2010ZX03003001)Shaanxi Province Science and Technology Research and Development Program (2011KJXX-40)
文摘In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.