This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detec...This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.展开更多
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu...A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.展开更多
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2013BAK01B02)the National Natural Science Foundation of China(No.61373176)the Scientific Research Projects of Shaanxi Educational Committee(No.14JK1693)
文摘This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.
基金The National Natural Science Foundation of China(No.51106025,51106027,51036002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110061)the Youth Foundation of Nanjing Institute of Technology(No.QKJA201303)
文摘A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.