A fuzzy neural network model is proposed to evaluate water quality. The model contains two parts: first, fuzzy mathematics theory is used to standardize the samples; second, the RBF neural network and the BP neural n...A fuzzy neural network model is proposed to evaluate water quality. The model contains two parts: first, fuzzy mathematics theory is used to standardize the samples; second, the RBF neural network and the BP neural network are used to train the standardized samples. The proposed model was applied to assess the water quality of 16 sections in 9 rivers in the Shaoguan area in 2005. The evaluation result was compared with that of the RBF neural network method and the reported results in the Shaoguan area in 2005. It indicated that the performance of the proposed fuzzy neural network model is practically feasible in the application of water quality assessment and its operation is simple.展开更多
Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, ...Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, optimization and integration. A prominent application is a viral marketing campaign which aims to use a small number of targeted infl uence users to initiate cascades of infl uence that create a global increase in product adoption. In this paper, we analyze mainly evaluation methods of user infl uence based on IDM evaluation model, Page Rank evaluation model, use behavior model and some other popular influence evaluation models in currently social network. And then, we extract the core idea of these models to build our influence evaluation model from two aspects, relationship and activity. Finally, the proposed approach was validated on real world datasets,and the result of experiments shows that our method is both effective and stable.展开更多
Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conduct...Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.展开更多
基金Supported by the National Key Research Program of China (No. 2003CCA00200)the Open Research Foundation of State KeyLab of Water Resources and Hydropower Engineering Science(No.2005C012).
文摘A fuzzy neural network model is proposed to evaluate water quality. The model contains two parts: first, fuzzy mathematics theory is used to standardize the samples; second, the RBF neural network and the BP neural network are used to train the standardized samples. The proposed model was applied to assess the water quality of 16 sections in 9 rivers in the Shaoguan area in 2005. The evaluation result was compared with that of the RBF neural network method and the reported results in the Shaoguan area in 2005. It indicated that the performance of the proposed fuzzy neural network model is practically feasible in the application of water quality assessment and its operation is simple.
基金supported by the Research Fund for the Doctoral Program(New Teachers)Ministry of Education of China under Grant No.20121103120032+2 种基金Humanity and Social Science Youth foundation of Ministry of Education of China under Grant No.13YJCZH065General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012Open Research Fund of Beijing Key Laboratory of Trusted Computing,Open Research Fund of Key Laboratory of Trustworthy Distributed Computing and Service(BUPT),Ministry of Education
文摘Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, optimization and integration. A prominent application is a viral marketing campaign which aims to use a small number of targeted infl uence users to initiate cascades of infl uence that create a global increase in product adoption. In this paper, we analyze mainly evaluation methods of user infl uence based on IDM evaluation model, Page Rank evaluation model, use behavior model and some other popular influence evaluation models in currently social network. And then, we extract the core idea of these models to build our influence evaluation model from two aspects, relationship and activity. Finally, the proposed approach was validated on real world datasets,and the result of experiments shows that our method is both effective and stable.
基金supported by National Basic Research Program of China (2012CB719905)National Natural Science Funds of China (41201404)Fundamental Research Funds for the Central Universities of China (2042018gf0008)
文摘Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.