The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
In this paper,the fault detection filter(FDF) design problem for networked control systems(NCSs) with both network-induced delay and data dropout is studied.Based on a new NCSs model proposed recently,an observer-base...In this paper,the fault detection filter(FDF) design problem for networked control systems(NCSs) with both network-induced delay and data dropout is studied.Based on a new NCSs model proposed recently,an observer-based filter is introduced to be the residual generator and formulated as an H∞-optimization problem for systems with two successive delay components.By applying Lyapunov-Krasovskii approach,a new sufficient condition on stability and H∞ performance is derived for systems with two successive delay components in the state.A solution of the optimization problem is then presented in terms of linear matrix inequality(LMI) formulation,dependently of time delay.In order to detect the fault,the residual evaluation problem is also considered.An illustrative design example is employed to demonstrate the validity of the proposed approach.展开更多
A new method of modeling discrete networked control systems with both the time-varying delay and packet loss was presented in this paper.The network-induced delay is time-varying and it can be smaller or larger than o...A new method of modeling discrete networked control systems with both the time-varying delay and packet loss was presented in this paper.The network-induced delay is time-varying and it can be smaller or larger than one sampling period.The feedback controller was designed by free-weighting matrices method and Lyapunov-Krasovskii functional to make the networked control system asymptotically stable.And sufficient conditions were derived.A numerical example is given to illustrate the effectiveness of the proposed approach.展开更多
The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on the membrane of neuron in a close loop type,and the Hindmarsh-Rose(HR)neuron under autapse is...The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on the membrane of neuron in a close loop type,and the Hindmarsh-Rose(HR)neuron under autapse is investigated.Firstly,the electric activity of single HR neuron under electric autapse and chemical autapse is investigated.It is found that quiescent neuron is activated due to appropriate time delay and feedback gain in the autapse,and the autapse plays an important role in waking up neuron.The parameter region for periodic,chaotic activity of neuron under autapse is calculated in a numerical way,and transition from spiking to bursting is observed by increasing the feedback gain and time delay carefully.Furthermore,the collective electric activities of neurons in a ring network is investigated and abundant electric activities are observed due to the competition between the autapse and the time-delayed coupling between adjacent neurons in the network,and time delay in coupling between neurons also plays an important role in enhancing synchronization in the network.展开更多
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.
基金National Natural Science Foundation of China(No.60574081)
文摘In this paper,the fault detection filter(FDF) design problem for networked control systems(NCSs) with both network-induced delay and data dropout is studied.Based on a new NCSs model proposed recently,an observer-based filter is introduced to be the residual generator and formulated as an H∞-optimization problem for systems with two successive delay components.By applying Lyapunov-Krasovskii approach,a new sufficient condition on stability and H∞ performance is derived for systems with two successive delay components in the state.A solution of the optimization problem is then presented in terms of linear matrix inequality(LMI) formulation,dependently of time delay.In order to detect the fault,the residual evaluation problem is also considered.An illustrative design example is employed to demonstrate the validity of the proposed approach.
基金National Natural Science Foundation of China(No.70701012)Youth Science and Technology Special Fund of Heilongjiang Province of China(No.QC07C15)
文摘A new method of modeling discrete networked control systems with both the time-varying delay and packet loss was presented in this paper.The network-induced delay is time-varying and it can be smaller or larger than one sampling period.The feedback controller was designed by free-weighting matrices method and Lyapunov-Krasovskii functional to make the networked control system asymptotically stable.And sufficient conditions were derived.A numerical example is given to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.112650081137212211072099 and 11365014)
文摘The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on the membrane of neuron in a close loop type,and the Hindmarsh-Rose(HR)neuron under autapse is investigated.Firstly,the electric activity of single HR neuron under electric autapse and chemical autapse is investigated.It is found that quiescent neuron is activated due to appropriate time delay and feedback gain in the autapse,and the autapse plays an important role in waking up neuron.The parameter region for periodic,chaotic activity of neuron under autapse is calculated in a numerical way,and transition from spiking to bursting is observed by increasing the feedback gain and time delay carefully.Furthermore,the collective electric activities of neurons in a ring network is investigated and abundant electric activities are observed due to the competition between the autapse and the time-delayed coupling between adjacent neurons in the network,and time delay in coupling between neurons also plays an important role in enhancing synchronization in the network.