期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于VMD和GP的短期风电功率置信区间预测 被引量:10
1
作者 涂智福 丁坚勇 周凯 《电测与仪表》 北大核心 2020年第1期84-88,共5页
传统风电点预测算法无法对风机出力的不确定性、随机性、波动性做出定量描述,提出一种基于变分模态分解(VMD)和高斯过程(GP)的区间预测方法,其意义在于能预测一定置信度下的短期风电功率波动区间。该方法利用变分模态分解算法将风功率... 传统风电点预测算法无法对风机出力的不确定性、随机性、波动性做出定量描述,提出一种基于变分模态分解(VMD)和高斯过程(GP)的区间预测方法,其意义在于能预测一定置信度下的短期风电功率波动区间。该方法利用变分模态分解算法将风功率序列分解为一系列不同带宽的模态分量以降低其非线性,对全部子模态分别建立高斯过程模型,最后叠加每个子模态预测结果得到风功率的置信区间。算例结果表明,与其他常规分解算法相比,该组合模型可以有效提高预测精度和预测区间覆盖率,减小预测区间宽度,具有一定的实用价值。 展开更多
关键词 风电 置信区间预测 变分模态分解 高斯过程
在线阅读 下载PDF
利用穗粒结构对水稻产量的拟合及预测
2
作者 王磊 朱德峰 蔡体常 《生物数学学报》 CSCD 1997年第S1期564-568,共5页
文章首先讨论了模型的拟合效果和预测效果的区别,给出了相应的估算方法,同时也讨论了抽样观测值大小对预测精度的影响,并结合实例说明如何从一组模型中选择一预测效果最好的模型.对1992年中国水稻研究所富阳实验基地和绍兴县测产样... 文章首先讨论了模型的拟合效果和预测效果的区别,给出了相应的估算方法,同时也讨论了抽样观测值大小对预测精度的影响,并结合实例说明如何从一组模型中选择一预测效果最好的模型.对1992年中国水稻研究所富阳实验基地和绍兴县测产样本点的数据,得到预测效果较好的模型为:产量预测值=理论产量+线性纠正估计,其中线性纠正的形式对两组数据略有不同. 展开更多
关键词 预测 拟合效果 预测效果 jackknife方法 预测置信区间
在线阅读 下载PDF
近红外全局隐含温度补偿模型的预测精度分析 被引量:2
3
作者 史婷 栾小丽 刘飞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第4期1058-1063,共6页
温度波动影响含氢基团之间的作用力,从而影响近红外光谱的吸收强度和波峰位置等,导致近红外测量精度的降低。针对温度变化对近红外光谱建模精度的影响,对全局隐含温度补偿方法进行了研究,并对其预测精度进行了分析,分别从预测方差和置... 温度波动影响含氢基团之间的作用力,从而影响近红外光谱的吸收强度和波峰位置等,导致近红外测量精度的降低。针对温度变化对近红外光谱建模精度的影响,对全局隐含温度补偿方法进行了研究,并对其预测精度进行了分析,分别从预测方差和置信区间两个方面对此类模型的精度进行了理论探讨和验证。同时通过温度的连续变化实验,即在温度连续变化的过程中,等时间间隔采集各样品的近红外光谱,研究了温度变化对光谱主元的连续模式影响,探讨了温度变化影响模型预测精度的方式和途径。最后对某高分子聚合物的粘度测量问题进行了实验验证和误差分析,得到标准温度下所建未经温度补偿的模型和全局隐含温度补偿模型的建模精度分别为:RMSEC=0.243 0,R_c=0.871 6,RMSEP=0.243 2,R_p=0.869 3;RMSEC=0.258 2,R_c=0.870 6,RMSEP=0.265 2,R_p=0.856 0,而当温度变化时,二者预测最大置信区间分别约为1.8和0.9kPa·s。虽然全局隐含温度补偿模型相比于标准温度模型建模精度略降低,但预测精度提高了一倍左右。理论分析和实验结果均表明,全局温度补偿模型具有较高的预测精度,且对温度的变化有较强的鲁棒性和可靠性。 展开更多
关键词 近红外光谱 温度补偿 预测置信区间 粘度测量
在线阅读 下载PDF
Time-varying confidence interval forecasting of travel time for urban arterials using ARIMA-GARCH model 被引量:6
4
作者 崔青华 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期358-362,共5页
To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive co... To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model. 展开更多
关键词 confidence interval forecasting travel time autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity ARIMA-GARCH) conditional variance reliability
在线阅读 下载PDF
Prognostic and Predictive Factors of Early Breast Cancer
5
作者 Zhong-jie CHEN Mei-ying YAN +4 位作者 Hong-qing ZHUANG Jian-lei HAO Rui-ying LI Zhi-yong YUAN Ping WANG 《Clinical oncology and cancer researeh》 CAS CSCD 2010年第4期246-252,共7页
OBJECTIVE To identify risk factors for relapse and death in patients with T1 to T2 breast cancer with 0-3 positive axillary lymph nodes.METHODS The case files of 540 breast cancer patients with T1-T2 tumors with 0-3 p... OBJECTIVE To identify risk factors for relapse and death in patients with T1 to T2 breast cancer with 0-3 positive axillary lymph nodes.METHODS The case files of 540 breast cancer patients with T1-T2 tumors with 0-3 positive nodes were reviewed retrospectively. Ten-year locoregional recurrence (LRR), distant recurrence (DR), disease-free survival (DFS) and overall survival (OS) of the patients were analyzed. Univariate statistical analysis and Cox proportional hazards models were carried out with SPSS so ware v.16.0.RESULTS The median follow-up of all the patients was 7.2 years. On multivariate analysis, 〉 20% positive axillary nodes was the only variable that influenced LRR adversely (hazard ratio[HR], 12.816; 95% confidence interval, 4.657-35.266, P 〈 0.001); 〉 20% positive axillary nodes and ductal carcinoma were variables that influenced DR adversely (HR, 11.088, 95% confidence interval, 3.807-32.297, P 〈 0.001; HR, 0.390, 95% confidence interval, 0.179-0.851, P = 0.018); 1-3 positive axillary nodes and 〉 20% positive axillary nodes were the only variables that had negative e. ect on 10-year OS (HR, 2.110, 95% confi dence interval, 1.364-3.264, P = 0.001; HR, 10.244, 95% confidence interval, 3.497-30.011, P 〈 0.001) and they were also adverse prognostic variables on 10-year DFS (HR, 1.634, 95% confidence interval, 1.171-2.279, P = 0.004; HR, 7.339, 95% confi dence interval,2.906-18.530, P 〈 0.001).CONCLUSION Axillary lymph nodal status is the only risk factor with a signifi cant impact on 10-year LRR, DR, OS and DFS.Patients with T1-T2 breast cancer with 0-3 positive lymph nodes have the LRR and DR of over 10 years, and the OS and DFS of less than 10 years, compared to patients with negative lymph nodes.Histology in primary tumors is a signifi cant prognostic factor for the 10-year DR. 展开更多
关键词 breast neoplasms RECURRENCE DEATH PROGNOSIS lymph nodes
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部