期刊文献+
共找到2,638篇文章
< 1 2 132 >
每页显示 20 50 100
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
1
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法
2
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊C均值 拉普拉斯机制
在线阅读 下载PDF
基于改进模糊C-均值聚类的陆上风电场集电线路回路划分与拓扑结构优化 被引量:2
3
作者 易海 吕宙安 +5 位作者 张伶俐 陈希 柳典 黄雨薇 韩星星 许昌 《发电技术》 CSCD 2024年第4期675-683,共9页
【目的】在“双碳”目标以及我国能源结构加速转型的双重驱动下,风电产业规模不断快速增长,亟须降本增效以应对平价上网压力。集电线路的造价在投资中占比较大,存在可观的优化空间。为了降低投资成本,提出了一种改进模糊C-均值(fuzzy C-... 【目的】在“双碳”目标以及我国能源结构加速转型的双重驱动下,风电产业规模不断快速增长,亟须降本增效以应对平价上网压力。集电线路的造价在投资中占比较大,存在可观的优化空间。为了降低投资成本,提出了一种改进模糊C-均值(fuzzy C-means,FCM)聚类算法。【方法】利用改进FCM聚类算法对陆上风电场集电线路回路进行划分。该算法综合考虑了方位角与欧式距离,以保障回路间线路不交叉,并使相邻机组聚集到同一回路;引入机位到聚类中心距离的修正因子,通过调节其数值限制回路容量。在回路划分的基础上,利用动态Prim算法对各回路进行集电线路优化选线。最后,通过某陆上风电场算例验证方法的有效性。【结果】与只考虑方位角的聚类方法相比,考虑方位角和间距的改进FCM算法优化效果更好,单回、双回连接对应的集电线路总造价分别降低了2.6%和5.4%。【结论】所提算法能够有效降低集电线路的总造价,具有一定的应用价值,可为风电场集电线路设计提供参考。 展开更多
关键词 陆上风电场 集电线路 拓扑结构优化 模糊c-均值(FCM)算法 动态Prim算法
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
4
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
5
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊C均值 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
基于模糊C-均值聚类算法的动态等值研究
6
作者 杨濛濛 《中国设备工程》 2024年第1期97-98,共2页
近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(F... 近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(FCM)及基于物理等效的动态等值计算方法;然后,提出了基于模糊C-均值聚类算法的动态等值计算方法及其流程图。最后,对某区域进行FCM机组分群,并进行动态等值计算,结果表明,采用基于FCM的动态等值方法,等值前后的动态特性基本一致,该方法具有良好的实用性。 展开更多
关键词 模糊c-均值算法 动态等值 参数
在线阅读 下载PDF
基于模糊聚类和随机子空间的高土石坝模态参数自动识别
7
作者 刘华仁 佟大威 +1 位作者 余佳 苏哲 《水力发电学报》 北大核心 2025年第2期107-115,共9页
高土石坝由于体积庞大、结构复杂等特点,其模态参数识别难度大,为后续动力分析带来挑战。本文根据地震实测数据,提出了基于模态稳定函数的模糊C均值聚类算法,并结合协方差驱动的随机子空间法形成了MSFCM-SSI的模态参数自动识别方法。该... 高土石坝由于体积庞大、结构复杂等特点,其模态参数识别难度大,为后续动力分析带来挑战。本文根据地震实测数据,提出了基于模态稳定函数的模糊C均值聚类算法,并结合协方差驱动的随机子空间法形成了MSFCM-SSI的模态参数自动识别方法。该方法实现了坝体模态参数的准确、自动识别,避免传统人工挑选特征导致的误差。通过二自由度数值模型与二维土坝有限元模型验证了提出的模态参数识别方法的有效性和准确性,并将该方法应用于两河口高心墙堆石坝的模态参数识别,证明其在实际工程中的适用性,为高土石坝抗震分析提供参考。 展开更多
关键词 高土石坝 模态参数 随机子空间 稳定图 模糊C均值
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
8
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊c-均值算法
在线阅读 下载PDF
基于模糊C-均值聚类的锅炉监控参数基准值建模 被引量:21
9
作者 赵欢 王培红 +2 位作者 钱瑾 苏志刚 彭献永 《中国电机工程学报》 EI CSCD 北大核心 2011年第32期16-22,共7页
锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型... 锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型负荷邻域区间对应的排烟氧量、排烟温度和飞灰含碳量等监控参数基准值,从而达到改善锅炉运行性能的目标。在多参量同步聚类算法中,利用有效性函数优化模糊聚类数,提出运行模式支持度的相关概念及其样本支持判定的规则,并对类中心点处较小ε区域内样本进行无偏估计。实例分析结果表明:该方法能够在兼顾参数之间耦合关系的基础上,得到高效工况下对应的各基准值样本点,并建立相应的基准值模型。 展开更多
关键词 基准值 能耗偏差 模糊c-均值 数据挖掘
在线阅读 下载PDF
基于人工鱼群算法和模糊C-均值聚类的洪水分类方法 被引量:30
10
作者 汪丽娜 陈晓宏 +1 位作者 李粤安 林凯荣 《水利学报》 EI CSCD 北大核心 2009年第6期743-748,755,共7页
为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优... 为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优的初始聚类结果,再使用FCM算法进行局部搜索,以避免因初值选取不当,而有可能陷入局部最小的缺陷。该方法应用于对西江流域洪水资料的分析结果表明,新算法具有比FCM算法更好的性能表现,使得到的分类结果更加准确合理。 展开更多
关键词 人工鱼群算法 模糊c-均值算法 洪水分
在线阅读 下载PDF
模糊c-均值算法改进及其对卫星遥感数据聚类的对比 被引量:12
11
作者 哈斯巴干 马建文 +2 位作者 李启青 刘志丽 韩秀珍 《计算机工程》 CAS CSCD 北大核心 2004年第11期14-15,91,共3页
提出的改进的模糊c-均值聚类方法采用基于标准协方差矩阵的Mahalanobis距离,即椭球体聚类方法,这种聚类算法更接近遥感数据散点图的实际情况,从而可以显著提高聚类效果。对北京卫星ASTER数据的聚类分析实验表明,改进的模糊c-均值聚类方... 提出的改进的模糊c-均值聚类方法采用基于标准协方差矩阵的Mahalanobis距离,即椭球体聚类方法,这种聚类算法更接近遥感数据散点图的实际情况,从而可以显著提高聚类效果。对北京卫星ASTER数据的聚类分析实验表明,改进的模糊c-均值聚类方法的聚类效果要优于K-均值聚类方法和常规的模糊c-均值聚类方法。 展开更多
关键词 遥感数据 K-均值 模糊C均值 MAHALANOBIS距离
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类算法研究 被引量:23
12
作者 王纵虎 刘志镜 陈东辉 《计算机科学》 CSCD 北大核心 2012年第9期166-169,共4页
针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单... 针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数m同时进行粒子群优化搜索,在得到最优适应度的同时,m也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集和多个UCI数据集上都取得了较好的效果。 展开更多
关键词 模糊c-均值 粒子群优化 粒子编码 初始中心
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
13
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值(FCMBMD)算法
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
14
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值算法 粒子群优化算法 粒子
在线阅读 下载PDF
基于自适应模糊C-均值的增量式聚类算法 被引量:11
15
作者 张忠平 陈丽萍 +1 位作者 王爱杰 林志杰 《计算机工程》 CAS CSCD 北大核心 2009年第6期60-62,65,共4页
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观... 针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。 展开更多
关键词 分析 模糊c-均值算法 增量式 AIFCM算法
在线阅读 下载PDF
可能性模糊C-均值聚类新算法 被引量:34
16
作者 武小红 周建江 《电子学报》 EI CAS CSCD 北大核心 2008年第10期1996-2000,共5页
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM... 模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM算法利用协方差矩阵来计算参数衡量了数据集的紧凑程度且无须先运行FCM,在新的PCM和FCM基础上提出了新PFCM算法,该算法无须事先运行FCM以计算参数,减少了算法运算时间.对数据集的测试实验结果表明了提出的新算法能同时产生模糊隶属度和典型值,减少聚类时间,同时具有更好的分类准确率. 展开更多
关键词 模糊 模糊c-均值 可能性c-均值 可能性模糊c-均值
在线阅读 下载PDF
基于改进半监督模糊C-均值聚类的发动机磨损故障诊断 被引量:13
17
作者 徐超 张培林 +1 位作者 任国全 傅建平 《机械工程学报》 EI CAS CSCD 北大核心 2011年第17期55-60,共6页
为解决在少量油液样本条件下发动机磨损故障诊断难的问题,提出一种改进半监督模糊C-均值聚类算法(Improved semi-supervised fuzzy c-means clustering algorithm,ISS-FCM)。定义一种优化的目标函数,将无标签样本与训练样本间的平均距... 为解决在少量油液样本条件下发动机磨损故障诊断难的问题,提出一种改进半监督模糊C-均值聚类算法(Improved semi-supervised fuzzy c-means clustering algorithm,ISS-FCM)。定义一种优化的目标函数,将无标签样本与训练样本间的平均距离度量考虑在内并赋予其一定权值,以引导聚类过程。为避免随机初始化划分矩阵使聚类结果陷入局部极值,利用训练样本对划分矩阵进行初始化。由于原始油液数据的聚类趋势不明显,不能有效描述发动机的磨损状态,利用自回归(Autoregression,AR)模型从油液光谱数据中提取出残差方差特征。结合某型履带车辆发动机台架试验,利用所提ISS-FCM算法对油液原子发射光谱测量数据进行分析,成功诊断出该发动机的拉缸和烧瓦故障。试验结果证明该方法在发动机磨损故障诊断领域的有效性。 展开更多
关键词 半监督模糊c-均值 优化目标函数 AR模型 故障诊断
在线阅读 下载PDF
改进的模糊C-均值聚类方法 被引量:12
18
作者 牛强 夏士雄 +1 位作者 周勇 张磊 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1257-1259,1272,共4页
该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验... 该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验表明,将改进的遗传算法与FCM算法结合起来进行聚类分析,可以在一定程度上避免FCM算法对初始值敏感和容易陷入局部最优解的缺陷,使聚类更合理,比单一使用FCM算法进行聚类分析的效果要好。 展开更多
关键词 C均值算法 模糊 遗传算法 优化计算
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
19
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 分析 模糊c-均值 蚁群算法 量子计算
在线阅读 下载PDF
两阶段模糊c-均值聚类算法及其应用 被引量:9
20
作者 同小军 曾山 +1 位作者 欧军 万波 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期71-75,共5页
针对模糊c-均值算法对初始值敏感、收敛结果易陷入局部极小值的缺点,提出了两阶段模糊c-均值聚类算法.首先通过恰当的贴近度(满足相似相近性)估计分类数,选取初始聚类中心;然后通过模糊c-均值算法进行聚类,最后对所得的聚类中心采用逻... 针对模糊c-均值算法对初始值敏感、收敛结果易陷入局部极小值的缺点,提出了两阶段模糊c-均值聚类算法.首先通过恰当的贴近度(满足相似相近性)估计分类数,选取初始聚类中心;然后通过模糊c-均值算法进行聚类,最后对所得的聚类中心采用逻辑斯谛型的灰色模型进行预测.由于聚类中心具有统计特征,因此较好地克服了样本间的随机误差,灰色逻辑斯谛模型较好地克服了每个样本内误差.采用上述方法对全国30个省市农村居民年收入进行了分析和比较,得出了具有参考价值的结果. 展开更多
关键词 模糊c-均值 中心 灰色逻辑斯谛预测模型 随机误差 区域经济分析
在线阅读 下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部