期刊文献+
共找到1,047篇文章
< 1 2 53 >
每页显示 20 50 100
改进注意力混合自动编码器视频异常检测研究
1
作者 陈兆波 张琳 马晓轩 《计算机工程与科学》 北大核心 2025年第1期130-139,共10页
视频异常检测是计算机视觉领域的重要研究内容之一,广泛应用于交通、公共安全等领域。然而,目前视频异常检测领域存在单个预测模型易受噪声干扰、单个重构模型存在泛化异常等问题。为了解决这些问题,提出了一种结合重构和预测模型的视... 视频异常检测是计算机视觉领域的重要研究内容之一,广泛应用于交通、公共安全等领域。然而,目前视频异常检测领域存在单个预测模型易受噪声干扰、单个重构模型存在泛化异常等问题。为了解决这些问题,提出了一种结合重构和预测模型的视频异常检测方法。在正常光流数据上训练具有注意力机制和内存增强模块的重构网络,再将重构后的光流和原始视频帧同时输入未来帧预测网络中,以重构光流为条件辅助帧预测网络更好地生成未来帧。为了提取更有效的特征,提出了一种残差卷积注意力模块SRCAM以促进重构和预测网络在全局和局部层面有效学习潜在空间的特征表示,从而增强模型对视频中异常事件的检测能力,提高模型的鲁棒性。通过在UCSD Ped2和CUHK Avenue这2个常用的视频异常检测数据集上进行的广泛的实验评估,表明了所提方法的有效性。 展开更多
关键词 视频异常检测 注意力机制 流重构 帧预测 自动编码器
在线阅读 下载PDF
基于鲁棒变分自动编码器的时序异常检测
2
作者 冯志鹏 赵旭俊 《计算机工程与设计》 北大核心 2025年第2期376-383,共8页
针对变分自动编码器在时序异常检测中鲁棒性低的问题,提出一种鲁棒变分自动编码器异常检测算法。通过对时间信息进行编码并融合在变分自动编码器的隐藏层中,有效学习不同时间窗口间的周期性模式;添加Dropout层以防止过拟合,增强局部特... 针对变分自动编码器在时序异常检测中鲁棒性低的问题,提出一种鲁棒变分自动编码器异常检测算法。通过对时间信息进行编码并融合在变分自动编码器的隐藏层中,有效学习不同时间窗口间的周期性模式;添加Dropout层以防止过拟合,增强局部特征的学习,增强时序关系在异常检测中的作用。提出一种损失函数来识别异常时序数据,通过重构误差与阈值的比较筛选异常。利用交替方向乘子法对异常时序进行验证,提高鲁棒性。在4个真实数据集上与4种基准方法相比,该算法在异常样本上的精度和F1分数均有显著提升。 展开更多
关键词 时间序列 自动编码器 神经网络 鲁棒 损失函数 重构误差 异常检测
在线阅读 下载PDF
基于改进自动编码器的水质数据异常检测研究
3
作者 曹可欣 李永飞 +1 位作者 韩博龙 王维政 《资源信息与工程》 2025年第1期101-105,109,共6页
随着物联网监测设备在水资源领域的大量应用,监测数据呈爆发式增长,这些数据常常会面临各种干扰,产生大量异常数据,因此应利用异常检测算法对相关异常数据进行筛选。本文根据水质监测数据具有时空依赖性的特征,提出了一种基于卷积门控... 随着物联网监测设备在水资源领域的大量应用,监测数据呈爆发式增长,这些数据常常会面临各种干扰,产生大量异常数据,因此应利用异常检测算法对相关异常数据进行筛选。本文根据水质监测数据具有时空依赖性的特征,提出了一种基于卷积门控循环单元和自注意力机制的自动编码器模型,针对白洋淀某水域的水质监测数据进行异常检测,筛选出多项异常值。 展开更多
关键词 水质数据 异常检测 自动编码器 卷积门控循环单元 自注意力机制 无监督学习
在线阅读 下载PDF
基于改进型降噪自动编码器的家用负荷辨识方法
4
作者 刘宣 刘兴奇 +3 位作者 唐悦 窦健 巫钟兴 倪斌 《电测与仪表》 北大核心 2024年第11期68-75,90,共9页
家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑... 家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑动窗的重叠部分计算进行了改进,使用中值滤波器对重叠窗的数据结果进行处理,能够较好地克服辨识结果偏高的问题。通过在REDD(reference energy disaggregation dataset)和TraceBase两个家庭用电数据集开展测试,证明了所提方法在辨识设备功率和判断设备所处状态两个方面都具有较好的效果,且各项指标均好于经典的基于因子隐马尔可夫模型(factorial hidden Markov model,FHMM)算法。另外所提算法的通用性较好,能够对不同型号、品牌的同种设备进行有效辨识,具有较好的实用价值。 展开更多
关键词 负荷辨识 降噪自动编码器 REDD数据集 TraceBase数据集 机器学习
在线阅读 下载PDF
基于标签感知变分自编码器的多标签分类
5
作者 孙宏健 徐鹏宇 +2 位作者 刘冰 景丽萍 于剑 《计算机科学与探索》 北大核心 2025年第3期714-723,共10页
随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,... 随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,并未考虑到特征和标签之间的语义关联性,缺乏对特征嵌入空间的有效约束,从而导致学习到的特征嵌入针对性不足。在标签相关性学习方面,现有的大多数方法主要关注低阶标签相关性,在面对复杂的实际标签场景时,多个标签之间的高阶相关性学习不足的问题变得更为突出。为解决上述问题,从嵌入表示学习和标签相关性学习出发,提出了一种基于标签感知变分自编码器的多标签分类方法。针对嵌入表示学习,提出使用特征和标签双流变分自编码器同时学习和对齐特征和标签的嵌入空间,对特征嵌入空间添加标签引导来增强特征嵌入。采用基于标签语义的交叉注意力机制,将特定标签信息加入到特征嵌入中,最终获得标签感知后的判别性特征嵌入。针对标签相关性学习,采用共享解码器中的多层自注意力机制,充分融合多个标签的相似性信息,通过不同标签间的共现交互,学习到标签高阶相关性表示并用于交叉感知特征嵌入。在四个不同领域的数据集上得到的实验结果表明,提出的方法能够有效增强特征和标签嵌入,并充分捕获标签之间高阶相关性信息用于多标签分类任务,通过与多个最先进算法在多个评价指标上进行比较分析,验证了提出的方法在性能上的显著优越性。 展开更多
关键词 多标签分类 嵌入空间学习 变分自动编码器 TRANSFORMER 标签相关性
在线阅读 下载PDF
基于AGRU自动编码器的无监督刀具异常检测
6
作者 雷文平 闫灏 +2 位作者 李沁远 李岩 郑鹏 《机床与液压》 北大核心 2024年第22期30-37,共8页
目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该... 目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该模型使用门控循环单元搭建编码器和解码器,提取时序数据的深层特征。在编码器重构部分融入注意力机制,实现对关键特征的选择,从而提高模型效率。此外,提出结合长时评价窗机制的异常检测模型,以进一步增强检测能力和稳定性。最后,通过在实验所得数据集和公开数据集上进行实验,证明该方法的有效性和可行性。结果表明:该方法在不同数据集上的准确率均超过98%;与刀具状态监测领域其他方法相比,该方法无需进行大量实验来获取刀具全生命周期数据和磨损标签数据,便于刀具检测系统的开发和应用。 展开更多
关键词 刀具异常监测 自动编码器 时间序列 注意力机制
在线阅读 下载PDF
基于Time-awareLSTM双向自动编码器的患者疾病分型
7
作者 赵奎 李琦 +1 位作者 高延军 马慧敏 《计算机系统应用》 2024年第2期166-175,共10页
医学领域中,患有相同疾病的患者之间也存在差异性,看似简单的疾病也可能表现出不同程度的复杂性,这给患者的识别、治疗和预后都带来巨大挑战.本文使用以纵向非结构化时序存储的电子病历来解决患者异质性,通过抓住就诊时间间隔不规律的... 医学领域中,患有相同疾病的患者之间也存在差异性,看似简单的疾病也可能表现出不同程度的复杂性,这给患者的识别、治疗和预后都带来巨大挑战.本文使用以纵向非结构化时序存储的电子病历来解决患者异质性,通过抓住就诊时间间隔不规律的特点增强对于隐藏信息的获取,经过前向和后向的双向学习捕捉当前就诊记录与过去和未来信息的联系,加深对于原序列特征提取的层次,使模型做出更为精准的决策.本文提出的BT-DST模型使用time-aware LSTM单元构造双向自动编码器学习患者强大的单一表示,然后将其用于患者聚类,通过统计分析得到患者针对当前疾病的亚型分型,可针对不同群体采用不同类型的治疗干预,为不同类患者提供针对其健康状况的精准医疗. 展开更多
关键词 异质性 纵向非结构化 自动编码器 聚类
在线阅读 下载PDF
基于变分自编码器掩蔽重建的骨骼点动作识别方法
8
作者 王雪婷 郭新 +1 位作者 汪松 陈恩庆 《图学学报》 北大核心 2025年第2期270-278,共9页
掩蔽自编码器(MAE)由于其强大的自监督学习能力被用于不同领域,特别是在数据被遮蔽或可用训练数据较少的任务中获得了较好的效果。但在诸如动作识别等视觉分类任务中,由于自编码器结构中编码器学习特征的能力有限,因此分类效果欠佳。为... 掩蔽自编码器(MAE)由于其强大的自监督学习能力被用于不同领域,特别是在数据被遮蔽或可用训练数据较少的任务中获得了较好的效果。但在诸如动作识别等视觉分类任务中,由于自编码器结构中编码器学习特征的能力有限,因此分类效果欠佳。为了实现用少量标注数据对模型进行训练,并提高自编码器在骨骼点动作识别任务上的特征提取能力,提出一种基于变分自编码器(VAE)的时空掩蔽重建模型(SkeletonMVAE)用于骨骼点动作识别。该模型在传统掩蔽重建模型的编码器后引入VAE的隐空间,使得编码器学习到数据的潜在结构和更丰富的信息,并通过参数β调控重建质量,对骨骼点数据进行掩蔽重建的预训练。预训练好的编码器被用作下游分类任务的特征提取器时,其输出的特征表示更紧凑、更具判别能力和鲁棒性,从而有助于提高模型分类精度和泛化能力,提升仅有少量标注数据训练情况下的模型性能。在NTU-60和NTU-120数据集上的实验结果表明了该方法在骨骼点动作识别任务上的有效性。 展开更多
关键词 人体骨骼点动作识别 自监督学习 时空掩蔽重建 变分自动编码器 隐空间聚合
在线阅读 下载PDF
结合图自动编码器和结构化注意力机制的miRNA-疾病关联预测方法
9
作者 谢国波 罗灿杰 +1 位作者 林志毅 江泽林 《计算机与现代化》 2024年第4期107-114,共8页
MicroRNA(miRNA)-疾病关联预测的研究有助于人类进行疾病预防、诊断和治疗等,许多研究人员开发出了基于图自动编码器的miRNA-疾病关联预测方法,然而大多数编码器方法在对中心节点编码的时候并没有考虑到邻居节点之间的差异。因此,本文... MicroRNA(miRNA)-疾病关联预测的研究有助于人类进行疾病预防、诊断和治疗等,许多研究人员开发出了基于图自动编码器的miRNA-疾病关联预测方法,然而大多数编码器方法在对中心节点编码的时候并没有考虑到邻居节点之间的差异。因此,本文提出一种结合图自动编码器和结构化注意力机制的miRNA-疾病关联预测方法(SAAE)。SAAE模型使用基于图神经网络的编码器,该编码器采用多个编码层堆叠的方式以探索多阶邻居的信息。为了将中心节点与邻居节点不同权重的特征信息进行融合并捕获节点在图中的高阶结构信息,引进结构化注意力机制对图节点的原始信息进行编码,以生成新的特征信息。随后,通过解码器进行解码,解码后的特征信息使用随机森林算法挖掘miRNA和疾病节点之间的潜在联系。实验结果表明,SAAE在5倍交叉验证的曲线下的平均面积为94.53%。此外,本文还进行了关于肾脏肿瘤和肺部肿瘤的2个案例研究,验证了SAAE预测的有效性。 展开更多
关键词 miRNA-疾病关联 自动编码器 注意力机制 结构信息
在线阅读 下载PDF
基于变分图自动编码器与K均值聚类的虚拟网络嵌入算法应用
10
作者 姚丽敏 《哈尔滨师范大学自然科学学报》 CAS 2024年第1期47-54,共8页
将虚拟网络映射到物理网络是网络功能虚拟化中一项重要的任务.为了有效地分配虚拟网络请求,需要将虚拟网络嵌入到物理网络拓扑中.然而,由于虚拟网络的复杂性和物理网络的限制,这一任务变得非常具有挑战性.鉴于此,研究在现有虚拟网络嵌... 将虚拟网络映射到物理网络是网络功能虚拟化中一项重要的任务.为了有效地分配虚拟网络请求,需要将虚拟网络嵌入到物理网络拓扑中.然而,由于虚拟网络的复杂性和物理网络的限制,这一任务变得非常具有挑战性.鉴于此,研究在现有虚拟网络嵌入算法(Virtual Network Embedding, VNE)模型基础上进行改进,融入了变分图自动编码器(Variational Graph Auto-Encoders, VGAE),提出了一种新型虚拟网络嵌入算法模型.通过编码器对虚拟网络的嵌入特征进行提取,随后利用K-means聚类算法对所得到的嵌入特征进行分类,最终得到合适的嵌入分配方法.实验结果表明,该新模型相较于其他同类型的嵌入算法性能表现最佳,稳定性最好,其平均嵌入请求接受率为60%,长期平均CPU资源利用率最高达97%.综上所述,研究提出的新型虚拟网络嵌入算法在资源利用率和嵌入质量方面表现出色,能够有效应对复杂的网络环境和大规模的虚拟网络请求. 展开更多
关键词 虚拟网络 变分图自动编码器 K-MEANS 嵌入算法 特征分配
在线阅读 下载PDF
小型光电编码器误差自动检测系统 被引量:2
11
作者 杜玉康 赵长海 +1 位作者 万秋华 孙树红 《仪表技术与传感器》 CSCD 北大核心 2024年第4期59-63,70,共6页
为了提高小型光电编码器误差检测的精度和效率,拓展编码器误差检测的应用,设计了一种误差检测系统。通过对编码器误差来源分析,以步进电机为动力,DSP芯片为数据采集与电机驱动核心,21位高精度编码器为角度基准,搭建了可进行编码器动态... 为了提高小型光电编码器误差检测的精度和效率,拓展编码器误差检测的应用,设计了一种误差检测系统。通过对编码器误差来源分析,以步进电机为动力,DSP芯片为数据采集与电机驱动核心,21位高精度编码器为角度基准,搭建了可进行编码器动态误差与静态误差自动检测的系统。并通过对误差的分析与拟合,实现了对编码器的误差补偿,提高了被检编码器测量精度。经实际检测验证,所设计编码器误差检测系统达到设计要求。 展开更多
关键词 光电编码器 动态误差 静态误差 自动检测 误差补偿
在线阅读 下载PDF
基于对抗变分自动编码器的风电机组传动链故障预警 被引量:1
12
作者 颜毅斌 陈清化 +2 位作者 管俊杰 范刚 谭香玲 《机电工程技术》 2024年第3期78-80,135,共4页
利用状态监测与故障诊断能够确保风电机组运行的可靠性与安全性。为了解决风电机组故障诊断适用性差、精度低的问题,针对风电机组早期故障预警及定位工作,在传动链故障诊断中引入深度学习算法,基于监控数据采集系统提供的数据基础,结合... 利用状态监测与故障诊断能够确保风电机组运行的可靠性与安全性。为了解决风电机组故障诊断适用性差、精度低的问题,针对风电机组早期故障预警及定位工作,在传动链故障诊断中引入深度学习算法,基于监控数据采集系统提供的数据基础,结合稀疏字典对对抗变分自动编码器(AVAE)进行改进,引入非线性深度表示,以降低数据维数,进而实现对原始数据内在特征的多样化、有效提取。同时,提出了一种AVAE-SDL故障诊断模型,可以有效排除训练过程中随机噪声造成的影响,有利于从高维数据中进一步提取内在特征。案例分析结果证明,AVAE-SDL故障诊断模型能够准确检测出机组故障,不存在误报情况,可作为风电机组传动链故障诊断的可靠工具。 展开更多
关键词 风电机组 对抗变分自动编码器 稀疏字典学习 传动链故障
在线阅读 下载PDF
基于自动编码器降维的Cox神经网络扩展模型在肺腺癌组学数据中的应用
13
作者 张永超 兰宁 +3 位作者 李淼 张云飞 赵晋芳 罗天娥 《中国卫生统计》 CSCD 北大核心 2024年第1期156-160,共5页
目的 在自动编码器对肺腺癌基因表达组学数据进行降维的基础上,构建Cox的神经网络扩展模型,从而对肺腺癌患者预后进行预测。方法 首先通过两种无监督学习方法:自动编码器和主成分分析分别对肺腺癌的基因表达数据进行降维,然后构建Cox-n... 目的 在自动编码器对肺腺癌基因表达组学数据进行降维的基础上,构建Cox的神经网络扩展模型,从而对肺腺癌患者预后进行预测。方法 首先通过两种无监督学习方法:自动编码器和主成分分析分别对肺腺癌的基因表达数据进行降维,然后构建Cox-nnet模型,并与DeepSurv模型进行比较,从中选择预测性能较好的方法来识别肺腺癌的高低危患者。结果 在TCGA与GEO两个数据集中,基于自动编码器降维后的Cox-nnet模型均有较好的一致性指数与AUC值,且高低预后两组患者的生存率都具有统计学差异。结论 自动编码器比主成分分析更适用于基因表达数据的无监督降维,且经自动编码器降维后的Cox-nnet模型拥有较好的预测性能,可以明显地区分肺腺癌的高低危患者,为肺腺癌的预后研究提供科学依据。 展开更多
关键词 肺腺癌 主成分分析 自动编码器 Cox-nnet 预后预测
在线阅读 下载PDF
基于自动编码器和支持向量机的飞机机动智能识别方法
14
作者 岳龙飞 杨任农 +3 位作者 杨文达 左家亮 刘会亮 许凌凯 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期210-217,共8页
飞机机动动作识别是空战意图识别和智能决策的基础。针对传统机动动作识别方法存在的高维数据分析和特征提取能力不足、识别准确率不高的问题,考虑到机动数据的高维性、时序性的特点,提出基于正则化自动编码器-支持向量机(RAE-SVM)的飞... 飞机机动动作识别是空战意图识别和智能决策的基础。针对传统机动动作识别方法存在的高维数据分析和特征提取能力不足、识别准确率不高的问题,考虑到机动数据的高维性、时序性的特点,提出基于正则化自动编码器-支持向量机(RAE-SVM)的飞机机动动作识别方法。依据机动动作数据变化规律和专家经验知识,构建了基于时间段数据特征的机动动作样本库;将无监督的自动编码器神经网络强大的特征提取能力和有监督的支持向量机优异的分类性能相结合,构建基于RAE-SVM的机动识别模型,采用机动动作样本库训练模型;通过引入正则化提高了RAE网络的泛化性能和预测准确率;最后与多种现有方法进行准确性与实时性对比,并选取空战机动动作数据进行实例验证。结果表明:所提方法识别准确率为92.75%,对一组机动数据识别仅需2 ms,满足实时性要求。因此,该方法可以快速准确地进行飞机机动动作识别,具有一定实用价值。 展开更多
关键词 机动动作识别 正则化自动编码器 支持向量机 特征提取 无监督学习
在线阅读 下载PDF
深层图注意力对抗变分自动编码器
15
作者 翁自强 张维玉 孙旭 《计算机应用与软件》 北大核心 2024年第9期156-165,共10页
现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重... 现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重的自适应分配,对抗正则化使编码器生成的嵌入向量分布接近数据的真实分布。为了加深图注意力层数,设计一种针对注意力网络的随机边删除技术(RDEdge),减少了层数过深引起的过平滑信息丢失。实验结果表明,AAVGA-d的图嵌入能力与目前流行的图自动编码器相比具有竞争优势。 展开更多
关键词 图注意力 过平滑 自动编码器 对抗
在线阅读 下载PDF
基于掩膜自动编码器的对抗对比蒸馏算法
16
作者 张点 董云卫 《计算机学报》 EI CAS CSCD 北大核心 2024年第10期2274-2288,共15页
随着人工智能的不断发展,神经网络对不同领域的任务都表现出了优异的性能.然而,对抗样本的存在对神经网络在安全相关领域中的应用提出了挑战.为了改善对抗训练耗时和对抗样本缺乏多样性的问题,本文提出一种使用改进掩膜自动编码器训练... 随着人工智能的不断发展,神经网络对不同领域的任务都表现出了优异的性能.然而,对抗样本的存在对神经网络在安全相关领域中的应用提出了挑战.为了改善对抗训练耗时和对抗样本缺乏多样性的问题,本文提出一种使用改进掩膜自动编码器训练教师网络的对比蒸馏算法抵御对抗攻击.首先,为了减弱教师模型对图像全局特征的依赖,教师模型在改进的掩膜自动编码器中学习如何根据可见子块推理遮挡子块的特征.然后,为了减弱对抗干扰的影响,本文采用知识蒸馏和对比学习的方法提升目标模型的对抗鲁棒性,通过知识蒸馏转移教师模型的特征到学生模型减少模型对全局特征的依赖,通过对比学习提升学生模型对图像之间细节特征的识别能力.最后,本文采用标签信息对分类头进行调节确保识别准确率.在ResNet50和WideResNet50中进行的实验表明,CIFAR-10中对抗准确率平均提升11.50%;CIFAR-100中对抗准确率平均提升6.35%.实验结果证明基于掩膜自动编码器的对比蒸馏算法能够通过只生成一次对抗样本减弱对抗干扰的影响,并通过随机掩膜构建多样本视角提升样本多样性,增强神经网络对抗鲁棒性. 展开更多
关键词 神经网络 对抗样本 对抗训练 掩膜自动编码器 对比蒸馏 对抗鲁棒性
在线阅读 下载PDF
基于变分自动编码器的车辆轨迹预测研究
17
作者 易虹宇 杨智宇 杜力 《重庆工商大学学报(自然科学版)》 2024年第2期60-65,共6页
针对轨迹预测中车辆与周边车辆、道路几何之间交互关系建模不充分,以及车辆轨迹多模态建模不完整等一系列问题,提出了一种基于变分自动编码器的车辆轨迹预测方法。首先,通过长短时记忆网络从原始数据中提取轨迹数据与车道信息的语义特征... 针对轨迹预测中车辆与周边车辆、道路几何之间交互关系建模不充分,以及车辆轨迹多模态建模不完整等一系列问题,提出了一种基于变分自动编码器的车辆轨迹预测方法。首先,通过长短时记忆网络从原始数据中提取轨迹数据与车道信息的语义特征;其次,引入多头注意力机制,采用两个单独的注意力模块分别建立车辆与车辆交互模型及车辆与道路交互模型,能够更好地反映周边车辆与道路几何对车辆轨迹的交互影响,得到丰富的场景上下文信息;接着利用变分自动编码器对车辆轨迹多模态建模,捕捉轨迹预测的随机性质以生成合理的未来轨迹分布;最后从分布中多次重复采样以生成多条可能的未来轨迹。通过搭建实验平台和使用Argoverse自然驾驶数据集进行测试,改进后的预测方法在平均位移误差和最终位移误差指标下的数值分别为1.03和1.51,预测精度上相较于其他3种预测方法,分别提升了45%、46%、32%;实验结果表明:预测方法可以有效地改善车辆与周边车辆、道路几何之间交互关系建模不充分,以及车辆轨迹多模态建模不完整等问题,预测精度提高,总体预测性能良好。 展开更多
关键词 轨迹预测 注意力机制 轨迹多模态 变分自动编码器
在线阅读 下载PDF
基于掩码自动编码器的图像修复研究 被引量:1
18
作者 骆迪 张乾 柏武贰 《现代信息科技》 2024年第3期69-72,78,共5页
掩码图像建模(MIM)因为在视觉表示方面具有巨大潜力而备受关注。现有的使用简单像素重构损失的MIM方法生成质量不高,输出模糊,针对这个不足,提出了基于掩码自动编码器的图像生成和自监督表示学习框架。对掩码图像建模研究的关键点是,该... 掩码图像建模(MIM)因为在视觉表示方面具有巨大潜力而备受关注。现有的使用简单像素重构损失的MIM方法生成质量不高,输出模糊,针对这个不足,提出了基于掩码自动编码器的图像生成和自监督表示学习框架。对掩码图像建模研究的关键点是,该模型在输入和输出时使用VQGAN学习到的语义标记,并将其与掩码相结合,增加对比损失函数和噪声损失函数,以实现生成和表示学习的双重目标。首先使用对比损失函数来塑造图像样本的嵌入空间,以促进有意义的表示学习。同时,利用噪声损失函数来鼓励模型重建图像中的高频成分,从而提高生成能力。这种综合的方法使得掩码自动编码器成为一个强大且高效的模型,同时具备生成高质量图像和学习有用的图像表示的能力。 展开更多
关键词 掩码 自动编码器 VQGAN 修复效果
在线阅读 下载PDF
基于自动编码器和随机树的智能电网FDI检测
19
作者 景峰 《电子技术应用》 2024年第11期80-84,共5页
为应对智能电网系统可能受到的新型网络攻击(如虚假数据注入攻击),提出了一种基于机器学习的入侵检测方法。该方法采用自动编码器进行数据降维,并使用极端随机树分类器检测潜在攻击。在IEEE标准电力系统数据的基础上,测试了该方法在不... 为应对智能电网系统可能受到的新型网络攻击(如虚假数据注入攻击),提出了一种基于机器学习的入侵检测方法。该方法采用自动编码器进行数据降维,并使用极端随机树分类器检测潜在攻击。在IEEE标准电力系统数据的基础上,测试了该方法在不同系统规模和攻击程度下的性能。实验结果显示,在IEEE 118节点系统中,该方法的检测准确率高达99.76%,即使在仅有0.1%攻击测量值的情况下,F1值也达到了99.77%,远超其他算法。该方法不仅能有效检测智能电网中的入侵行为,而且具有较高的计算效率。 展开更多
关键词 攻击检测 自动编码器 网络攻击 极端随机树 虚假数据注入 智能电网
在线阅读 下载PDF
优化堆叠降噪自编码器用于调度操作票自动校验
20
作者 区伟健 徐策 +2 位作者 曾传凯 蒋宗祺 乐庆丰 《核电子学与探测技术》 CAS 北大核心 2024年第2期356-361,共6页
为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验... 为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验。实验结果表明,所提方法的操作票校验评估综合指标可达94.88%,是几种方法中最高的,具有一定的优势。 展开更多
关键词 堆叠降噪自编码器 金豺狼优化算法 操作票 自动校验
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部