期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
区间直觉模糊多属性群决策自收敛算法 被引量:12
1
作者 戚筱雯 梁昌勇 +1 位作者 曹清玮 丁勇 《系统工程与电子技术》 EI CSCD 北大核心 2011年第1期110-115,共6页
对区间直觉模糊多属性群决策中的一致性问题进行研究,引入了一种可自收敛算法得到一致性群决策矩阵。首先基于区间直觉模糊数的运算法则和集结算子,将单个决策者的决策矩阵集结为群体决策矩阵;然后通过可自收敛算法反复迭代,直到得到满... 对区间直觉模糊多属性群决策中的一致性问题进行研究,引入了一种可自收敛算法得到一致性群决策矩阵。首先基于区间直觉模糊数的运算法则和集结算子,将单个决策者的决策矩阵集结为群体决策矩阵;然后通过可自收敛算法反复迭代,直到得到满足一致性的群体决策矩阵;最后再次基于区间直觉模糊数的集结算子和排序规则实现方案选优。从理论上论证了该算法的收敛性和保序性,并通过算例验证了算法的可行性和有效性。 展开更多
关键词 多属性群决策 区间直觉模糊数 自收敛算法 一致性
在线阅读 下载PDF
基于层次自收敛PCA-OCSVM算法的入侵检测方法研究
2
作者 郭建明 张红卓 +1 位作者 马涛 张永兵 《价值工程》 2025年第4期149-151,共3页
随着网络技术的迅猛发展,网络安全问题日益突出,尤其是网络入侵检测领域。传统的入侵检测方法往往存在效率低下或准确性不足等问题。本文提出了一种基于层次自收敛主成分分析(PCA)与单类支持向量机(OCSVM)结合的入侵检测方法,旨在提高... 随着网络技术的迅猛发展,网络安全问题日益突出,尤其是网络入侵检测领域。传统的入侵检测方法往往存在效率低下或准确性不足等问题。本文提出了一种基于层次自收敛主成分分析(PCA)与单类支持向量机(OCSVM)结合的入侵检测方法,旨在提高入侵检测的效率和准确性。首先,采用层次化的方法对数据进行预处理,通过自收敛PCA降维处理,优化特征集,并减少噪声干扰和计算复杂度。随后,利用OCSVM对处理后的数据进行训练与分类,以识别正常与异常行为。实验结果表明,该方法在多个标准数据集上具有较好的检测性能,相比传统方法,在检测率、误报率及检测速度等关键指标上均有所提升。本研究为网络入侵检测技术的发展提供了新的思路和方法。 展开更多
关键词 入侵检测 主成分分析(PCA) 单类支持向量机(OCSVM) 自收敛算法
在线阅读 下载PDF
Adaptive genetic algorithm with the criterion of premature convergence 被引量:9
3
作者 袁晓辉 曹玲 夏良正 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期40-43,共4页
To counter the defect of traditional genetic algorithms, an improved adaptivegenetic algorithm with the criterion of premature convergence is provided. The occurrence ofpremature convergence is forecasted using colony... To counter the defect of traditional genetic algorithms, an improved adaptivegenetic algorithm with the criterion of premature convergence is provided. The occurrence ofpremature convergence is forecasted using colony entropy and colony variance. When prematureconvergence occurs, new individuals are generated in proper scale randomly based on superiorindividuals in the colony. We use these new individuals to replace some individuals in the oldcolony. The updated individuals account for 30 percent - 40 percent of all individuals and the sizeof scale is related to the distribution of the extreme value of the target function. Simulationtests show that there is much improvement in the speed of convergence and the probability of globalconvergence. 展开更多
关键词 genetic algorithm premature convergence ADAPTATION
在线阅读 下载PDF
GLOBAL CONVERGENCE OF A CLASS OF OPTIMALLY CONDITIONED SSVM METHODS
4
作者 杨正方 夏爱生 +1 位作者 韩立兴 刘光辉 《Transactions of Tianjin University》 EI CAS 1997年第1期73-76,共4页
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob... This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions. 展开更多
关键词 optimally conditioned self scaling variable metric methods global convergence unconstrained optimization
在线阅读 下载PDF
Anisotropic Biquadratic Finite Element with Some Natural Superconvergence Results
5
作者 李清善 孙会霞 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期388-394,共7页
The paper studies the convergence and the superconvergence of the biquadratic finite element for Poisson' problem on anisotropic meshes. By detailed analysis, it shows that the biquadratic finite element is anisotrop... The paper studies the convergence and the superconvergence of the biquadratic finite element for Poisson' problem on anisotropic meshes. By detailed analysis, it shows that the biquadratic finite element is anisotropically superconvergent at four Gauss points in the element. Key words: 展开更多
关键词 ANISOTROPIC biquadratic finite element superclose SUPERCONVERGENCE
在线阅读 下载PDF
SIGNAL ESTIMATION WITH BINARY-VALUED SENSORS
6
作者 Leyi WANG Gang George YIN +1 位作者 Chanying LI Weixing ZHENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第3期622-639,共18页
This paper introduces several algorithms for signal estimation using binary-valued outputsensing.The main idea is derived from the empirical measure approach for quantized identification,which has been shown to be con... This paper introduces several algorithms for signal estimation using binary-valued outputsensing.The main idea is derived from the empirical measure approach for quantized identification,which has been shown to be convergent and asymptotically efficient when the unknown parametersare constants.Signal estimation under binary-valued observations must take into consideration oftime varying variables.Typical empirical measure based algorithms are modified with exponentialweighting and threshold adaptation to accommodate time-varying natures of the signals.Without anyinformation on signal generators,the authors establish estimation algorithms,interaction between noisereduction by averaging and signal tracking,convergence rates,and asymptotic efficiency.A thresholdadaptation algorithm is introduced.Its convergence and convergence rates are analyzed by using theODE method for stochastic approximation problems. 展开更多
关键词 IDENTIFICATION signal estimation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部