针对在线PMU(Phasor Measurement Unit)数据会存在随机量测噪声甚至不良数据的实际情况,本文提出了一种输电线路正序参数的自适应抗差最小二乘在线辨识方法。文中基于线路双端多时刻断面的PMU电气量建立了线路正序参数的最小二乘辨识模...针对在线PMU(Phasor Measurement Unit)数据会存在随机量测噪声甚至不良数据的实际情况,本文提出了一种输电线路正序参数的自适应抗差最小二乘在线辨识方法。文中基于线路双端多时刻断面的PMU电气量建立了线路正序参数的最小二乘辨识模型;在简要介绍抗差最小二乘原理的基础上,为充分利用量测信息,采用IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)权函数(方案I)实现"三段"法抗差参数辨识;并利用中位数原理在线估计方程残差序列的期望和方差,实现自适应地调整权函数的抗差阈值。该方法无需事先确定量测设备的量测误差,具有很好的抗差能力及结果可信度,同时也消除了参数迭代对初值的敏感性。基于PSCAD仿真和PMU实测数据的算例表明,该方法十分有效,更适合于在线参数辨识。展开更多
文摘针对在线PMU(Phasor Measurement Unit)数据会存在随机量测噪声甚至不良数据的实际情况,本文提出了一种输电线路正序参数的自适应抗差最小二乘在线辨识方法。文中基于线路双端多时刻断面的PMU电气量建立了线路正序参数的最小二乘辨识模型;在简要介绍抗差最小二乘原理的基础上,为充分利用量测信息,采用IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)权函数(方案I)实现"三段"法抗差参数辨识;并利用中位数原理在线估计方程残差序列的期望和方差,实现自适应地调整权函数的抗差阈值。该方法无需事先确定量测设备的量测误差,具有很好的抗差能力及结果可信度,同时也消除了参数迭代对初值的敏感性。基于PSCAD仿真和PMU实测数据的算例表明,该方法十分有效,更适合于在线参数辨识。
文摘针对复杂噪声环境下的参数估计问题,提出了一种稳健的自适应序贯M估计算法(Adaptive RecursiveM-Estimation,ARME),并从理论分析和Monte Carlo实验仿真两方面分析了该算法的收敛性、渐进无偏特性和稳健性.理论分析和仿真试验表明:在高斯白噪声背景下,ARME具有与序贯最小二乘算法(Recursive Least Square,RLS)相近的性能;在有突出干扰等非高斯噪声背景下,与RLS相比,ARME的参数估计收敛速度更快,估计误差更小,而且在稳健性上大大优于RLS.