针对机器人导航无迹快速同步定位与地图构建(Unscented Fast SLAM)算法由于重采样造成样本粒子退化,进而导致估计精度下降的问题,提出一种基于自适应渐消无迹粒子滤波的Unscented Fast SLAM算法。该算法将无迹粒子滤波与渐消滤波相融合...针对机器人导航无迹快速同步定位与地图构建(Unscented Fast SLAM)算法由于重采样造成样本粒子退化,进而导致估计精度下降的问题,提出一种基于自适应渐消无迹粒子滤波的Unscented Fast SLAM算法。该算法将无迹粒子滤波与渐消滤波相融合产生自适应建议分布函数,同时将粒子根据权值进行优化组合,仅对组合后的部分不稳定的粒子进行系统重采样。通过这两方面使得系统在具有高度自适应性的同时保证粒子的多样性,缓解粒子的退化现象。仿真实验表明,提出算法与Unscented Fast SLAM算法相比,可以用较少的粒子实现更高的SLAM的估计精度,很大程度上降低了SLAM算法的复杂度。展开更多
针对即时定位与地图构建(Simultaneous localization and mapping,SLAM)中经典方法的误差累积以及噪声干扰问题,提出基于自适应渐消EKF的SLAM算法。该算法通过引入自适应渐消因子,实时在线调整先验概率密度估计,减小陈旧观测信息对系统...针对即时定位与地图构建(Simultaneous localization and mapping,SLAM)中经典方法的误差累积以及噪声干扰问题,提出基于自适应渐消EKF的SLAM算法。该算法通过引入自适应渐消因子,实时在线调整先验概率密度估计,减小陈旧观测信息对系统估计的影响,在保证协方差矩阵正定性的同时,达到提高SLAM算法估计精度及增强其鲁棒性的目的。通过仿真和基于开源数据集的实验,将提出的算法与EKF-SLAM和UKF-SLAM两种算法进行比较,结果表明AFEKF-SLAM算法在估计精度上优于另外两种算法。展开更多
文摘针对机器人导航无迹快速同步定位与地图构建(Unscented Fast SLAM)算法由于重采样造成样本粒子退化,进而导致估计精度下降的问题,提出一种基于自适应渐消无迹粒子滤波的Unscented Fast SLAM算法。该算法将无迹粒子滤波与渐消滤波相融合产生自适应建议分布函数,同时将粒子根据权值进行优化组合,仅对组合后的部分不稳定的粒子进行系统重采样。通过这两方面使得系统在具有高度自适应性的同时保证粒子的多样性,缓解粒子的退化现象。仿真实验表明,提出算法与Unscented Fast SLAM算法相比,可以用较少的粒子实现更高的SLAM的估计精度,很大程度上降低了SLAM算法的复杂度。
文摘针对即时定位与地图构建(Simultaneous localization and mapping,SLAM)中经典方法的误差累积以及噪声干扰问题,提出基于自适应渐消EKF的SLAM算法。该算法通过引入自适应渐消因子,实时在线调整先验概率密度估计,减小陈旧观测信息对系统估计的影响,在保证协方差矩阵正定性的同时,达到提高SLAM算法估计精度及增强其鲁棒性的目的。通过仿真和基于开源数据集的实验,将提出的算法与EKF-SLAM和UKF-SLAM两种算法进行比较,结果表明AFEKF-SLAM算法在估计精度上优于另外两种算法。