Mesoporous molecular sieve (MCM-41) was synthesized by two-step hydrothermal method. The synthesized mesoporous molecular sieve was characterized by XRD, TEM, and specific surface measurement. The resulting mesoporous...Mesoporous molecular sieve (MCM-41) was synthesized by two-step hydrothermal method. The synthesized mesoporous molecular sieve was characterized by XRD, TEM, and specific surface measurement. The resulting mesoporous molecular sieve was well long range ordering and had specific surface area more than 800 m 2 /g. The research on catalytic benzene hydrogenation on MCM-41-supported Pt showed that the conversion of benzene was higher than 95% and the selectivity of cyclohexane was up to 100% at a reaction temperature of 250 ℃ and reaction pressure of 3.0 MPa.展开更多
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ...Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.展开更多
A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocompos...A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.展开更多
The kinetics of liquid-phase hydrogenation of benzene in misch metai nickel-five (MINi5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration...The kinetics of liquid-phase hydrogenation of benzene in misch metai nickel-five (MINi5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic modei obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MINi5-C6H6 slurry system is 42.16kJ·mol-1.展开更多
The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochlor...The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochloroaniline is formed as a byproduct. Models based on Rideal-Eley and Langmuir-Hinshelwood mechanism have been proposed based on the rate data and the kinetic regime. The former model can be used to fit the experimental data better. Reaction controlling steps are physical adsorption of hydrogen and adsorbed ortho-nitrochlorobenzene reacted on the surface of catalyst.展开更多
Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this p...Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.展开更多
文摘Mesoporous molecular sieve (MCM-41) was synthesized by two-step hydrothermal method. The synthesized mesoporous molecular sieve was characterized by XRD, TEM, and specific surface measurement. The resulting mesoporous molecular sieve was well long range ordering and had specific surface area more than 800 m 2 /g. The research on catalytic benzene hydrogenation on MCM-41-supported Pt showed that the conversion of benzene was higher than 95% and the selectivity of cyclohexane was up to 100% at a reaction temperature of 250 ℃ and reaction pressure of 3.0 MPa.
基金supported by the National Natural Science Foundation of China(201573136,U1510105)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.
文摘A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.
基金State Key Project of Basic Research of China(TG2000026406)National Natural Science Foundation of China(No.50071053)
文摘The kinetics of liquid-phase hydrogenation of benzene in misch metai nickel-five (MINi5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic modei obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MINi5-C6H6 slurry system is 42.16kJ·mol-1.
文摘The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochloroaniline is formed as a byproduct. Models based on Rideal-Eley and Langmuir-Hinshelwood mechanism have been proposed based on the rate data and the kinetic regime. The former model can be used to fit the experimental data better. Reaction controlling steps are physical adsorption of hydrogen and adsorbed ortho-nitrochlorobenzene reacted on the surface of catalyst.
文摘Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.