期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于多重相似性和增强注意力预测药物-靶标相互作用
1
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
自适应球形演化的药物-靶标相互作用预测方法 被引量:1
2
作者 刘一迪 温自豪 +2 位作者 任富香 李诗音 唐德玉 《计算机应用》 CSCD 北大核心 2024年第3期989-994,共6页
相较于传统药物的研发,药物-靶标的预测方法能够有效降低成本,加快研发进程,但是在实际应用中存在数据集平衡度低、预测精确率不高等问题。基于此,提出一种自适应球形演化的药物-靶标相互作用预测方法ASEKELM(self-Adaptive Spherical E... 相较于传统药物的研发,药物-靶标的预测方法能够有效降低成本,加快研发进程,但是在实际应用中存在数据集平衡度低、预测精确率不高等问题。基于此,提出一种自适应球形演化的药物-靶标相互作用预测方法ASEKELM(self-Adaptive Spherical Evolution based on Kernel Extreme Learning Machine)。该方法根据结构相似的药物与靶标更易存在相互作用的原理筛选出高置信度的负样本;并且为了解决球形演化算法易陷入局部最优的问题,利用搜索因子历史记忆的反馈机制及群大小线性递减的策略(LPSR),实现全局搜索和局部搜索的平衡,提高算法的寻优能力;然后利用自适应球形演化算法对核极限学习机(KELM)的参数进行优化。在基于黄金标准的数据集上将ASEKELM与NetLapRLS(Network Laplacian Regularized Least Square)、BLM-NII(Bipartite Local Model with Neighbor-based Interaction profile Inferring)等算法进行对比,验证算法的性能。实验结果表明,在酶(E)、G-蛋白偶联受体(GPCR)、离子通道(IC)和核受体(NR)数据集中,ASE-KELM的ROC曲线下面积(AUC)与PR曲线下面积(AUPR)均优于对比算法;且基于DrugBank等数据库,ASE-KELM在预测新药物-靶标对的验证过程中表现良好。 展开更多
关键词 球形搜索 核极限学习机 药物-靶标相互作用 药物发现 自适应
在线阅读 下载PDF
一种基于去噪自编码器融合相似度的药物-靶标相互作用预测方法
3
作者 林艳梅 曹爱清 彭昱忠 《广西科学》 北大核心 2024年第5期842-853,共12页
基于机器学习预测潜在药物-靶标相互作用(Drug-Target Interaction, DTI)的方法是一个具有竞争力的研究主题,但当前相关的预测方法和模型在特征学习方面尚有较大的发展空间。本研究基于无监督学习思想提出了一个结合去噪自编码器和分子... 基于机器学习预测潜在药物-靶标相互作用(Drug-Target Interaction, DTI)的方法是一个具有竞争力的研究主题,但当前相关的预测方法和模型在特征学习方面尚有较大的发展空间。本研究基于无监督学习思想提出了一个结合去噪自编码器和分子相似度非线性计算方式的药物-靶标相互作用预测方法。该方法通过去噪自编码器学习和构建药物-靶标相互作用对的特征,并在此基础上融入药物-药物、靶标-靶标之间的相似信息以增强药物-靶标特征的丰富度,从而提高模型的预测能力。在Enzymes、Ion channels、GPCRs和Nuclear receptors等4个基准数据集的比较实验结果表明,本研究所提出的模型显著优于PPAEDTI、AutoDTI++、CMF、Bi-PSSM、ESBoost、CNNDTI、NFSPDTI和EFMSDTI等8个较先进模型,并与另一先进模型aSDAE相当。可见,本研究所提出的模型提高了药物(化合物)与靶标相互作用的预测性能,可为新药研发和药物重新定位提供更优的药物-靶标相互作用预测支持。 展开更多
关键词 药物-靶标相互作用 深度学习 去噪自编码器 新药研发 药物重定位
在线阅读 下载PDF
基于多标记学习预测药物-靶标相互作用 被引量:5
4
作者 彭利红 刘海燕 +2 位作者 任日丽 马俊 王建芬 《计算机工程与应用》 CSCD 北大核心 2017年第15期260-265,共6页
对药物-靶标关联进行了研究,提出基于弱标记和多信息融合的药物-靶标相互作用预测方法 PDML。通过与其他方法对比和数据库检索验证评估PDML模型的性能:与Yamanishi提出的方法、RLSMDA、Lap RLS及Net CBP相比,除在核受体数据集中该方法在... 对药物-靶标关联进行了研究,提出基于弱标记和多信息融合的药物-靶标相互作用预测方法 PDML。通过与其他方法对比和数据库检索验证评估PDML模型的性能:与Yamanishi提出的方法、RLSMDA、Lap RLS及Net CBP相比,除在核受体数据集中该方法在AUC上的性能比Lap RLS略有降低之外,模型在敏感性、特异性、AUC和AUPR上的性能均优于其他四种方法;提取前5个预测分值最高的药物-靶标对,这些药物-靶标对能通过检索Drug Bank、Super Target和KEGG数据库而得到验证。 展开更多
关键词 药物-靶标相互作用 多标记学习 多信息融合 药物-靶标相互作用网络 药物相似性
在线阅读 下载PDF
基于图神经网络的药物-靶标相互作用预测研究 被引量:3
5
作者 王红梅 郭真俊 张丽杰 《长春工业大学学报》 CAS 2021年第4期318-325,共8页
阐述基于图神经网络的药物-靶标相互作用预测问题的主要变体,并对各种变体的方法进行深入梳理与分析,对常用数据集进行整理与分析,最后对药物-靶标相互作用预测进行总结与展望。
关键词 图神经网络 药物-靶标相互作用预测 数据集
在线阅读 下载PDF
基于异质信息网络元路径的药物-靶标相互作用预测模型 被引量:2
6
作者 廖懿鸣 欧阳纯萍 +1 位作者 刘永彬 胡富裕 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第1期37-44,共8页
提出一种融合元路径信息的图神经网络模型,用于预测药物-靶标相互作用(GMDTI)。首先根据8个数据集中的药物、靶标、疾病和副作用数据以及它们之间的8种作用关系,构建药物-靶标异质信息网络(HIN);然后定义两条元路径来捕获药物-靶标HIN... 提出一种融合元路径信息的图神经网络模型,用于预测药物-靶标相互作用(GMDTI)。首先根据8个数据集中的药物、靶标、疾病和副作用数据以及它们之间的8种作用关系,构建药物-靶标异质信息网络(HIN);然后定义两条元路径来捕获药物-靶标HIN中的不同子结构信息和不同节点间隐藏的语义信息,并应用图神经网络的方法聚合节点的一阶邻居信息和元路径中节点间的语义信息;最后利用端到端的学习方法完成DTIs预测。该方法同时考虑药物-靶标HIN的结构特性和元路径语义信息,有助于学习到更多潜在的药物-靶标作用关系。实验结果表明,GMDTI的预测准确率高于所有基线模型,AUC达到98.6%,AUPR达到94.5%。同时通过调整数据的稀疏度和降噪实验,证明GMDTI具备优于所有基线模型的鲁棒性。 展开更多
关键词 药物-靶标相互作用预测 图神经网络 异质信息网络 元路径 特征表示
在线阅读 下载PDF
药物-靶标相互作用预测平台设计与实现 被引量:2
7
作者 任浩然 邓博韬 +1 位作者 李建华 孝大宇 《现代计算机》 2023年第5期104-108,共5页
旧药新用是应对突发疾病的有效手段。利用计算技术筛选潜在的药物-靶标关联,有利于快速发现治疗疾病的候选药物。基于Matlab语言设计了一款药物-靶标预测平台,在标准数据集上运用网络一致性投影方法预测,分析了余弦相似性计算、高斯内... 旧药新用是应对突发疾病的有效手段。利用计算技术筛选潜在的药物-靶标关联,有利于快速发现治疗疾病的候选药物。基于Matlab语言设计了一款药物-靶标预测平台,在标准数据集上运用网络一致性投影方法预测,分析了余弦相似性计算、高斯内核相似性计算及Logistic变换对预测结果的影响,实验结果证实了平台的有效性。 展开更多
关键词 药物重定向 药物-靶标相互作用 预测 平台
在线阅读 下载PDF
人工智能预测药物-靶标相互作用研究进展 被引量:6
8
作者 李擎宇 张孝昌 王升启 《中国药理学与毒理学杂志》 CAS 北大核心 2022年第1期1-10,共10页
药物-靶标相互作用(DTI)鉴定是药物研发中的关键步骤,可有效缩小候选药物分子的搜索范围。同时,DTI鉴定也是多重药理和药物重定位等研究的基础。然而,通过生物实验研究DTI耗时长、成本高且伴有一定的盲目性。随着信息科学的飞速进步,人... 药物-靶标相互作用(DTI)鉴定是药物研发中的关键步骤,可有效缩小候选药物分子的搜索范围。同时,DTI鉴定也是多重药理和药物重定位等研究的基础。然而,通过生物实验研究DTI耗时长、成本高且伴有一定的盲目性。随着信息科学的飞速进步,人工智能(AI)在药物研发领域得到广泛应用,成为研究DTI的有效策略。根据算法设计原理的不同,用于DTI预测的AI方法可分为基于相似性、基于特征、基于网络和基于深度学习4类。本文重点介绍该4类方法的构建思路,并讨论模型评价问题和负样本问题。AI在DTI预测工作中具有巨大的发展潜力,可为药物研发带来新的机遇。 展开更多
关键词 药物-靶标相互作用 药靶组学 药物开发 人工智能 机器学习
在线阅读 下载PDF
多源描述符融合的药物-靶标相互作用预测框架 被引量:1
9
作者 成志兴 丁彦蕊 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期782-793,共12页
识别药物靶标相互作用(DTI)是药物发现的一项关键任务,在虚拟筛选、药物重定位和识别药物副作用等领域都发挥了至关重要的作用。通过传统的生物实验方法识别DTI通常昂贵且耗时,随着深度学习在自然语言处理等领域取得的巨大成功,已有许... 识别药物靶标相互作用(DTI)是药物发现的一项关键任务,在虚拟筛选、药物重定位和识别药物副作用等领域都发挥了至关重要的作用。通过传统的生物实验方法识别DTI通常昂贵且耗时,随着深度学习在自然语言处理等领域取得的巨大成功,已有许多研究利用深度学习预测潜在的DTI。然而,先前的许多研究仅利用药物和蛋白的单视角特征预测DTI,忽视了多源描述符的潜在价值。该文提出了一种融合多源描述符的药物靶标相互作用预测框架(DFDTI),充分利用药物和蛋白不同视角的结构信息。首先,通过全连接(FC)层为多源描述符生成低维表示;然后,考虑到不同类型的描述符对DTI预测的贡献度不同,利用通道注意力机制给予不同的描述符权重;此外,使用单层Transformer编码器增强描述符的特征表示;最后,拼接药物和蛋白的增强特征表示,并输入到深度神经网络(DNN)中以预测DTI。实验结果表明,DFDTI能够有效融合不同类型的描述符,在3类评价指标上均优于该文中所有的基线方法。 展开更多
关键词 药物-靶标相互作用 特征融合 注意力机制 深度学习
在线阅读 下载PDF
基于一致性学习预测药物-靶标相互作用 被引量:4
10
作者 彭利红 田雄飞 周立前 《湖南工业大学学报》 2020年第6期27-33,共7页
提出了一种基于局部全局一致性(LLGC)学习的药物-靶标相互作用预测模型。该模型基于邻近结点及流形结构或聚类中的结点更有可能有相同标签这一结论,综合考虑靶标和药物数据的全局和局部特征,融合靶标的序列相似性和药物-靶标网络的拓扑... 提出了一种基于局部全局一致性(LLGC)学习的药物-靶标相互作用预测模型。该模型基于邻近结点及流形结构或聚类中的结点更有可能有相同标签这一结论,综合考虑靶标和药物数据的全局和局部特征,融合靶标的序列相似性和药物-靶标网络的拓扑结构信息,提出药物-靶标相互作用预测方法,挖掘来自标准数据集中的药物-靶标相互作用数据。为了分析局部全局一致性方法的性能,在酶、离子通道、GPCR与核受体4个数据集中对此方法与SBGI、KBMF2K、NetCBP和WNN-GIP进行了比较,实验结果表明,除了在核受体数据中LLGC的AUC值比NetCBP和WNN-GIP中的略低外,在其他3个数据中,LLGC的性能都优于其他方法。确定模型性能后,将其用于药物-靶标相互作用数据预测,给出了得分最高的5个药物-靶标相互作用数据,且得知标准数据集中已知的药物-靶标相互作用数据绝大部分出现在预测集的前20%中,91%以上出现在预测集的前50%中。这个结果表明,LLGC能有效预测药物与靶标之间的潜在关联。 展开更多
关键词 局部全局一致性 药物-靶标相互作用 药物重定位 靶标序列相似性 机器学习
在线阅读 下载PDF
人工智能预测药物-靶标相互作用研究进展
11
作者 卓素珍 《中国科技期刊数据库 医药》 2022年第5期158-161,共4页
药物研发过程耗时长、成本高且伴随一定的盲目性。通常新药从研发到上市需要10~15年。通过建立人工智能技术与虚拟-实体筛选平台结合的原创药物发现体系,将药物分子设计、天然产物化学、药物化学、结构生物学、药物筛选与药理研究能力... 药物研发过程耗时长、成本高且伴随一定的盲目性。通常新药从研发到上市需要10~15年。通过建立人工智能技术与虚拟-实体筛选平台结合的原创药物发现体系,将药物分子设计、天然产物化学、药物化学、结构生物学、药物筛选与药理研究能力整合起来,加快原创药物发现的进程。通过计算机模拟手段进行分子对接、药物筛选、先导物的优化、定量构效关系和药效团模型等药物设计方法,揭示药物与受体靶标的作用机制,探索药物靶点的空间结构,最终目标是设计具有能选择性地与某一靶标结合的分子;并探测小分子与受体大分子靶点的作用机制,判断药物小分子与受体大分子结合的可能活性位点,提出改善药物的药效学和动力学性质的方案,根据已有的药物研发数据自动设计出上百万种与特定靶标相关的小分子化合物,并根据药效、选择性、ADME等其他条件对化合物进行筛选。经过多轮筛选,最终确定可用于进行临床研究的候选药物。人工智能的使用大大加速药物研发的过程,并对新药的有效性和安全性进行预测。 展开更多
关键词 药物-靶标相互作用 药靶组学 药物开发 人工智能 药物筛选
在线阅读 下载PDF
演化蛙跳算法的药物-靶标相互作用预测
12
作者 陆行政 林畅然 +1 位作者 李智健 唐德玉 《现代计算机》 2023年第15期35-39,44,共6页
为建立一个高效的药物-靶标相互作用(DTI)预测分类模型,针对预测DTI的常用模型传统支持向量机在参数选择中存在的问题,采用演化蛙跳算法(EFLA)优化支持向量机参数。该算法在第一阶段用量子进化算子来实现局部搜索,第二阶段利用自适应特... 为建立一个高效的药物-靶标相互作用(DTI)预测分类模型,针对预测DTI的常用模型传统支持向量机在参数选择中存在的问题,采用演化蛙跳算法(EFLA)优化支持向量机参数。该算法在第一阶段用量子进化算子来实现局部搜索,第二阶段利用自适应特征向量进化算子实现全局搜索。实验结果表明:演化蛙跳算法在进行预测药物-靶标相互作用实验中有较高的准确率。 展开更多
关键词 药物-靶标相互作用 群体智能 支持向量机 量子进化算子 演化蛙跳算法 自适应特征向量进化算子
在线阅读 下载PDF
基于混合编码-图神经网络的药物靶标相互作用预测方法
13
作者 左乐 《信息系统工程》 2025年第3期4-7,共4页
药物—靶标相互作用预测在药物发现中起着至关重要的作用,在药物再利用等领域具有重要意义。但是传统的生物实验周期长且成本高,因此基于深度学习的预测方法备受关注。提出一种基于混合编码—图神经网络的药物靶标相互作用预测框架,对... 药物—靶标相互作用预测在药物发现中起着至关重要的作用,在药物再利用等领域具有重要意义。但是传统的生物实验周期长且成本高,因此基于深度学习的预测方法备受关注。提出一种基于混合编码—图神经网络的药物靶标相互作用预测框架,对于药物表示,该框架采用图神经网络对药物分子图建模。对于靶标表示,使用不同的策略编码靶标序列信息。在公共数据集上取得较好的实验结果,表明模型预测药物靶标相互作用的有效性。 展开更多
关键词 药物-靶标相互作用预测 图神经网络 深度学习
在线阅读 下载PDF
基于多模态栈式混合自编码器的药物靶标相互作用预测
14
作者 张星宇 陈卓 +3 位作者 黄印 原雨婷 李颖 王彬 《计算机工程与应用》 CSCD 北大核心 2024年第19期334-342,共9页
针对药物-靶标相互作用(drug-target interactions,DTI)预测中存在的单模态特征不足、多模态数据利用不充分、数据噪声大等问题,提出了一种基于多模态栈式混合自编码器(stacked hybrid autoencoder,SHADTI)的药物靶标相互作用预测方法。... 针对药物-靶标相互作用(drug-target interactions,DTI)预测中存在的单模态特征不足、多模态数据利用不充分、数据噪声大等问题,提出了一种基于多模态栈式混合自编码器(stacked hybrid autoencoder,SHADTI)的药物靶标相互作用预测方法。SHADTI包括数据预处理模块、潜在特征提取模块和预测模块三部分。数据预处理模块利用随机游走和PPMI(positive pointwise mutual information)算法对药物和靶标的多模态数据进行全局拓扑结构处理。潜在特征提取模块利用深度自编码器混合了降噪块、稀疏块、堆栈块,充分挖掘多模态之间蕴含的信息,生成潜在药物靶标特征向量。预测模块将药物和靶标的潜在特征拼接后输入到全连接层进行预测。所提方法在5个公开数据集上与现有深度学习方法进行对比,实验结果均优于所对比的方法,表明SHADTI能够有效利用多模态数据间的互补信息,提高了DTI预测精度。 展开更多
关键词 药物-靶标相互作用 多模态 自编码器 深度学习
在线阅读 下载PDF
基于人工智能的药物-靶标相互作用预测 被引量:4
15
作者 杨朔 王洁 +3 位作者 张梦婷 沈子豪 李洪林 李诗良 《中国现代应用药学》 CAS CSCD 北大核心 2022年第21期2797-2803,共7页
目的建立一个高效的药物-靶标相互作用预测分类模型,为生物实验提供有力的补充工具。方法研究开发一种基于深度学习的方法来预测药物-靶标相互作用:通过引入高维分子指纹和蛋白质描述符,并应用概率矩阵分解算法生成负样本集,构建一个高... 目的建立一个高效的药物-靶标相互作用预测分类模型,为生物实验提供有力的补充工具。方法研究开发一种基于深度学习的方法来预测药物-靶标相互作用:通过引入高维分子指纹和蛋白质描述符,并应用概率矩阵分解算法生成负样本集,构建一个高效的药物-靶标相互作用预测分类模型。结果与其他已报道的方法相比,本方法具有可比性或优越性,预测准确性、特异性、敏感性以及AUC值均>90%,提示该方法在药物靶标预测方面具有良好的应用前景。结论人工智能深度学习模型以及概率矩阵分解算法的结合有助于解决药物-靶标相互作用预测精度低、负样本选择不合理等问题。 展开更多
关键词 药物-靶标相互作用 深度学习 概率矩阵分解算法 靶标预测
原文传递
基于机器学习的药物-靶标相互作用预测 被引量:3
16
作者 刘皓淼 杨志伟 +2 位作者 王力卓 周彦章 龙建纲 《中国生物工程杂志》 CAS CSCD 北大核心 2022年第4期40-48,共9页
近年来,随着计算机硬件、软件工具和数据丰度的不断突破,以机器学习为代表的人工智能技术在生物、基础医学和药学等领域的应用不断拓展和融合,极大地推动了这些领域的发展,尤其是药物研发领域的变革。其中,药物-靶标相互作用(drug-targe... 近年来,随着计算机硬件、软件工具和数据丰度的不断突破,以机器学习为代表的人工智能技术在生物、基础医学和药学等领域的应用不断拓展和融合,极大地推动了这些领域的发展,尤其是药物研发领域的变革。其中,药物-靶标相互作用(drug-target interactions,DTI)的识别是药物研发领域中的重要难题和人工智能技术交叉融合的热门方向,研究人员在DTI预测方面做了大量的工作,构建了许多重要的数据库,开发或拓展了各类机器学习算法和工具软件。对基于机器学习的DTI预测的基本流程进行了介绍,并对利用机器学习预测DTI的研究进行了回顾,同时对不同的机器学习方法运用于DTI预测的优缺点进行了简单总结,以期对开发更加有效的预测算法和DTI预测的发展提供帮助。 展开更多
关键词 机器学习 药物-靶标相互作用 药物研发 算法
原文传递
基于符号网络的药物靶标相互作用关系预测
17
作者 雷涵清 蒋亚健 +2 位作者 习智威 张万成 陈明 《现代计算机》 2022年第12期65-68,74,共5页
药物-靶标相互作用(DTI)预测在新药物研发中具有重要意义。大多数计算方法将其建模为二元预测问题,忽视了DTI的具体类型。考虑DTI的积极或消极作用,将有利于研究多种药物对共同靶标的综合作用机理。通过构建药物靶标符号网络,将DTI预测... 药物-靶标相互作用(DTI)预测在新药物研发中具有重要意义。大多数计算方法将其建模为二元预测问题,忽视了DTI的具体类型。考虑DTI的积极或消极作用,将有利于研究多种药物对共同靶标的综合作用机理。通过构建药物靶标符号网络,将DTI预测问题转化为药物与靶标异构网络的符号链路预测问题,并引入Logistic回归与随机游走构建学习系统。在两个数据集进行实验,其预测结果呈现出良好的指标,表明该思路的可行性。 展开更多
关键词 药物-靶标相互作用 符号网络 链路预测 LOGISTIC回归 随机游走
在线阅读 下载PDF
一种多信息融合的药物-靶标关联预测算法 被引量:3
18
作者 彭利红 李泽军 +1 位作者 陈敏 任日丽 《计算机工程》 CAS CSCD 北大核心 2016年第6期218-223,229,共7页
在药物结构相似性和靶标序列相似性的基础上,结合药物-靶标相互作用网络信息,考虑分类器和数据集合分布的复杂性,提出一种半监督学习算法预测药物与靶标之间的关联。实验结果表明,该算法的预测性能较DBSI,KBMF2K等算法有所提高。对其预... 在药物结构相似性和靶标序列相似性的基础上,结合药物-靶标相互作用网络信息,考虑分类器和数据集合分布的复杂性,提出一种半监督学习算法预测药物与靶标之间的关联。实验结果表明,该算法的预测性能较DBSI,KBMF2K等算法有所提高。对其预测到的药物-靶标相互作用数据进行打分并排序,从中提取前30%的数据,其中有部分相互作用可在KEGG,Drug Bank,Super Target和Ch EMBL数据库中得到验证。 展开更多
关键词 多信息融合 半监督学习 药物-靶标相互作用网络 药物相似性 靶标相似性
在线阅读 下载PDF
深度协同过滤算法实现药物-靶标关系预测 被引量:5
19
作者 何亚琼 朱晓军 《计算机工程与设计》 北大核心 2020年第8期2195-2200,共6页
为提高药物-靶标相互作用(drug-target interaction,DTI)预测效果,提出一种深度协同过滤算法实现DTI预测。在约束非负矩阵分解中融入多输入深度自编码器,通过添加药物、靶标双重正则化,约束矩阵分解中潜在影响因子的学习,缓解新药物、... 为提高药物-靶标相互作用(drug-target interaction,DTI)预测效果,提出一种深度协同过滤算法实现DTI预测。在约束非负矩阵分解中融入多输入深度自编码器,通过添加药物、靶标双重正则化,约束矩阵分解中潜在影响因子的学习,缓解新药物、新靶标的冷启动问题。针对DTI矩阵的稀疏问题,设计多输入深度自编码器,实现同时提取DTI矩阵和药物、靶标辅助信息的潜在特征。对4类数据集设计两组实验,实验结果表明,深度协同过滤算法优于其它7种算法。 展开更多
关键词 药物-靶标相互作用 协同过滤 矩阵分解 自编码器 多输入
在线阅读 下载PDF
基于交互式多特征融合算法的药物靶标预测
20
作者 高浩田 李东喜 +1 位作者 陈泽华 赵芊 《太原理工大学学报》 CAS 北大核心 2024年第4期751-758,共8页
【目的】药物-靶标相互作用预测在药物重定位和药物开发方面起着至关重要的作用。【方法】提出了一种基于冗余度-相关性和交互作用结合的多特征融合算法RCI(redundancy-correlation and interaction),并结合堆叠集成分类器搭建药物靶标... 【目的】药物-靶标相互作用预测在药物重定位和药物开发方面起着至关重要的作用。【方法】提出了一种基于冗余度-相关性和交互作用结合的多特征融合算法RCI(redundancy-correlation and interaction),并结合堆叠集成分类器搭建药物靶标预测模型。首先,提取药物和靶标的高维特征进行多特征融合,使用RCI算法构建非冗余的且具有相关性的交互特征子集。然后,将交互特征子集输入到由多个基学习器构成的堆叠集成分类器中进行训练。最后,对两个基准药物靶标网络进行了预测。【结果】实验结果表明,所搭建模型的准确度ACC值和AUC值均优于现有基线方法,说明所提算法的有效性。 展开更多
关键词 药物-靶标相互作用 多特征融合 特征选择 堆叠集成分类器 机器学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部