期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种大众麻将计算机博弈的快速出牌方法 被引量:1
1
作者 张小川 严明珠 +2 位作者 涂飞 陈俊宇 魏乐天 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期102-107,共6页
麻将是一种典型的不完美信息博弈的项目,目前对于麻将问题的解决方法大多朝着深度强化学习方向进行研究,也取得了非常好的效果。但是,此类麻将AI都是建立在有高质量数据集基础上的,而大众麻将缺少关键的大量有效标注的数据集,因此,如何... 麻将是一种典型的不完美信息博弈的项目,目前对于麻将问题的解决方法大多朝着深度强化学习方向进行研究,也取得了非常好的效果。但是,此类麻将AI都是建立在有高质量数据集基础上的,而大众麻将缺少关键的大量有效标注的数据集,因此,如何在对弈中快速出牌就成为主要问题。针对以上问题,对出牌动作进行研究,以启发式快速出牌为思路,提出了面向敌方胡牌牌张的蒙特卡洛评估法,将启发式快速出牌方法和蒙特卡洛评估法相结合,对每张手牌进行估值计算,通过估值分数决定每轮出牌牌张。以历史出牌次数为分界点,以此分界将博弈过程时序化为前后2个决策时段,前段采用启发式快速出牌方法,后段采用蒙特卡洛评估法。通过前后时段法分层递进决策处理过程,给出最佳出牌着法,能有效减少出牌的决策时间并降低点炮率。采用所提方法的程序在中国计算机博弈锦标赛中获得了一等奖,证明了该方法的有效性。 展开更多
关键词 计算机博弈 不完美信息博弈 麻将 启发式快速出牌 蒙特卡洛评估法
在线阅读 下载PDF
Comparison of GUF and Monte Carlo methods to evaluate task-specific uncertainty in laser tracker measurement 被引量:1
2
作者 杨景照 李国喜 +2 位作者 吴宝中 龚京忠 王杰 《Journal of Central South University》 SCIE EI CAS 2014年第10期3793-3804,共12页
Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen... Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning. 展开更多
关键词 task-specific uncertainty laser tracker measurement uncertainty evaluation Monte Carlo method uncertainy framework(GUF)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部