Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data tra...Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.展开更多
By building a turbine charged diesel engine model and a proportional electromagnet-rack model in Matlab/Simulink and using dSPACE,a hardware-in-loop(HIL) simulation platform for the electronic governor is constructed....By building a turbine charged diesel engine model and a proportional electromagnet-rack model in Matlab/Simulink and using dSPACE,a hardware-in-loop(HIL) simulation platform for the electronic governor is constructed.A developed electronic governor is simulated in this platform.The comparison between the experiment and simulation results indicates that the built models can meet the HIL requirements.The control parameters obtained from virtual calibration and the control algorithm validated by HIL simulation can be applied in real bench experiments directly.展开更多
基金National Natural Science Foundation of China(No.41506122)
文摘Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.
文摘By building a turbine charged diesel engine model and a proportional electromagnet-rack model in Matlab/Simulink and using dSPACE,a hardware-in-loop(HIL) simulation platform for the electronic governor is constructed.A developed electronic governor is simulated in this platform.The comparison between the experiment and simulation results indicates that the built models can meet the HIL requirements.The control parameters obtained from virtual calibration and the control algorithm validated by HIL simulation can be applied in real bench experiments directly.