为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用B...为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点。BWAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性。结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗。通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性。展开更多
We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ...We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.展开更多
文摘为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点。BWAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性。结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗。通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性。
文摘We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.