Complicated changes occur in hemodynamics of hepatic artery and vein, and portal vein under various kinds of pathologic status hepatic blood supply. This because of distinct double article reviews the clinical applica...Complicated changes occur in hemodynamics of hepatic artery and vein, and portal vein under various kinds of pathologic status hepatic blood supply. This because of distinct double article reviews the clinical application of hepatic computed tomography perfusion in some liver diseases.展开更多
Objective: The beneficial effect of percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has been well established, but there is the problem of no-reflow phenomenon which is an a...Objective: The beneficial effect of percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has been well established, but there is the problem of no-reflow phenomenon which is an adverse prognostic factor in primary PCI. In the present study the effect of a distal protection device (PercuSurge GuardWire; GW) on epicardial blood flow and myocardial perfusion was evaluated. Methods and Results: Patients with AMI were randomly divided into 2 groups, the GW and the control groups. The GW group included 52 patients with AMI who underwent primary PCI with GW protection and the control group included 60 patients who underwent primary PCI without GW protection. Epicardial blood flow in the infarct-related artery (IRA) and myocardial perfusion were evaluated according to the thrombolysis in myocardial infarction (TIMI) flow grade and the myocardial blush grade (MBG). We found TIMI score of 3 was obtained significantly more frequently in the GW group (96%) than in the control group (80%). The MBG score of 3 was obtained also significantly greater in the GW group (65%) than in the control group (33%). Conclusion: Primary PCI with GW protection can significantly improve epicardial blood flow and myocardial perfusion.展开更多
Pulsatile blood flows in curved atherosclerotic arteries are studied by computer simulations. Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on t...Pulsatile blood flows in curved atherosclerotic arteries are studied by computer simulations. Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on the disturbed flow patterns downstream of a curved artery with a stenosis at the inner wall. The numerical results indicate a strong dependence of flow pattern on the blood viscosity and inlet flow rate, while the influence of the inlet flow profile to the flow pattern in downstream is negligible.展开更多
The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes...The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.展开更多
This paper constructs a mathematical model for blood flow through an artery with mild stenosis. Constitutive equations for Carreau fluid are employed in the mathematical modeling. Analysis has been carried out in the ...This paper constructs a mathematical model for blood flow through an artery with mild stenosis. Constitutive equations for Carreau fluid are employed in the mathematical modeling. Analysis has been carried out in the presence of constant magnetic field. Symmetric and asymmetric shapes of stenosis are taken. Governing flow model is computed for the series solution. Whe flow quantities of interest, for instance, axial velocity, pressure gradient, pressure drop, impedance and shear stress at the walls of stenotic artery are described for various pertinent parameters entering into the problem.展开更多
Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible...Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible and electrically conducting fluid in the presence of magnetic field has been investigated. Analytical expressions for axial velocity, flow rate, fluid acceleration and shear stress are obtained by applying the Laplace and finite Hankel's transforms. The velocity profiles for various values of Hartmann number, couple stress parameters and the angle of inclination are shown graphically. Also the effects of body acceleration, Womerseley parameters and permeability parameters have been discussed. The results obtained in the present mathematical model for different values of the parameters involved in the problem show that the flow of blood is influenced by the effect of magnetic field, the porous medium and the inclination angle. The present model is compared with the other existing models. Through this theoretical investigation, the applications of magnetic field have also been indicated in the field of biological, biomedical and engineering sciences.展开更多
The present study deals with the flow of blood through a stenotic artery in the presence of a uniform magnetic field. Different flow situations are taken into account by considering the regular and irregular shapes of...The present study deals with the flow of blood through a stenotic artery in the presence of a uniform magnetic field. Different flow situations are taken into account by considering the regular and irregular shapes of stenosis lying inside the walls of artery. Blood inside the artery is assumed to be Eyring-Powell fluid. A mathematical model is developed and simplified under the physical assumptions of stenosis. The regular perturbation method is adopted to find the solutions for axial velocity and pressure gradient. The variations in pressure drop across the stenosis length, the impedance and the shear stress at the walls of stenotic artery are discussed in detail through graphs. It is observed that the Eyring-Powell fluid is helpful in reducing the resistance to the flow in stenotic artery. Moreover, symmetric form of stenosis is more hazardous as compared to asymmetric stenosis.展开更多
In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteristics is analyzed, assuming the flow is steady a...In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteristics is analyzed, assuming the flow is steady and blood is treated as Williamson fluid. Per- turbation solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest.展开更多
基金Supported by Shanghai Leading Academic Discipline Project, No. S30203Shanghai Jiaotong University School of Medicine Leading Academic Discipline Project
文摘Complicated changes occur in hemodynamics of hepatic artery and vein, and portal vein under various kinds of pathologic status hepatic blood supply. This because of distinct double article reviews the clinical application of hepatic computed tomography perfusion in some liver diseases.
文摘Objective: The beneficial effect of percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has been well established, but there is the problem of no-reflow phenomenon which is an adverse prognostic factor in primary PCI. In the present study the effect of a distal protection device (PercuSurge GuardWire; GW) on epicardial blood flow and myocardial perfusion was evaluated. Methods and Results: Patients with AMI were randomly divided into 2 groups, the GW and the control groups. The GW group included 52 patients with AMI who underwent primary PCI with GW protection and the control group included 60 patients who underwent primary PCI without GW protection. Epicardial blood flow in the infarct-related artery (IRA) and myocardial perfusion were evaluated according to the thrombolysis in myocardial infarction (TIMI) flow grade and the myocardial blush grade (MBG). We found TIMI score of 3 was obtained significantly more frequently in the GW group (96%) than in the control group (80%). The MBG score of 3 was obtained also significantly greater in the GW group (65%) than in the control group (33%). Conclusion: Primary PCI with GW protection can significantly improve epicardial blood flow and myocardial perfusion.
文摘Pulsatile blood flows in curved atherosclerotic arteries are studied by computer simulations. Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on the disturbed flow patterns downstream of a curved artery with a stenosis at the inner wall. The numerical results indicate a strong dependence of flow pattern on the blood viscosity and inlet flow rate, while the influence of the inlet flow profile to the flow pattern in downstream is negligible.
文摘The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.
文摘This paper constructs a mathematical model for blood flow through an artery with mild stenosis. Constitutive equations for Carreau fluid are employed in the mathematical modeling. Analysis has been carried out in the presence of constant magnetic field. Symmetric and asymmetric shapes of stenosis are taken. Governing flow model is computed for the series solution. Whe flow quantities of interest, for instance, axial velocity, pressure gradient, pressure drop, impedance and shear stress at the walls of stenotic artery are described for various pertinent parameters entering into the problem.
文摘Mathematical model for the pulsatile blood flow through a porous medium under the influence of periodic body acceleration for gravity flow along an inclined tube by considering blood as a couple stress, incompressible and electrically conducting fluid in the presence of magnetic field has been investigated. Analytical expressions for axial velocity, flow rate, fluid acceleration and shear stress are obtained by applying the Laplace and finite Hankel's transforms. The velocity profiles for various values of Hartmann number, couple stress parameters and the angle of inclination are shown graphically. Also the effects of body acceleration, Womerseley parameters and permeability parameters have been discussed. The results obtained in the present mathematical model for different values of the parameters involved in the problem show that the flow of blood is influenced by the effect of magnetic field, the porous medium and the inclination angle. The present model is compared with the other existing models. Through this theoretical investigation, the applications of magnetic field have also been indicated in the field of biological, biomedical and engineering sciences.
文摘The present study deals with the flow of blood through a stenotic artery in the presence of a uniform magnetic field. Different flow situations are taken into account by considering the regular and irregular shapes of stenosis lying inside the walls of artery. Blood inside the artery is assumed to be Eyring-Powell fluid. A mathematical model is developed and simplified under the physical assumptions of stenosis. The regular perturbation method is adopted to find the solutions for axial velocity and pressure gradient. The variations in pressure drop across the stenosis length, the impedance and the shear stress at the walls of stenotic artery are discussed in detail through graphs. It is observed that the Eyring-Powell fluid is helpful in reducing the resistance to the flow in stenotic artery. Moreover, symmetric form of stenosis is more hazardous as compared to asymmetric stenosis.
文摘In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteristics is analyzed, assuming the flow is steady and blood is treated as Williamson fluid. Per- turbation solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest.