本文重点分析了2013年夏季格陵兰冰盖表面的融化特征,并将2013年与2012年融化极值年的异常进行对比,探讨二者之间存在的动力和热力差异及其对冰盖表面融化的影响和机制。结果表明:2013年夏季格陵兰冰盖表面最大融化范围仅为44%,远小于2...本文重点分析了2013年夏季格陵兰冰盖表面的融化特征,并将2013年与2012年融化极值年的异常进行对比,探讨二者之间存在的动力和热力差异及其对冰盖表面融化的影响和机制。结果表明:2013年夏季格陵兰冰盖表面最大融化范围仅为44%,远小于2012年的97%,持续的时间也比2012年短20天左右,平均的融化面积和持续时间都接近气候平均态。2013年夏季大气环流异常与2012年近乎完全相反,格陵兰及附近海域为低压异常,500 h Pa位势高度场为负异常,大气环流和2012年相比更具有纬向型。格陵兰岛的北部和南部出现气旋异常,有利于输送北极的冷空气到格陵兰岛,不仅降低了夏季格陵兰冰盖表面的平均温度,而且也减少了格陵兰高温事件发生的频率。同时,2013年夏季格陵兰表面向下的辐射通量异常分布大体上呈西南—东北走向,不同于2012年的南北分布。尽管从分布上看,总的向下辐射通量以正的短波分量为主,但是长短波分量相互抵消使得2013年夏季总的向下辐射通量接近气候平均态,这使得辐射对冰盖表面温度的影响不明显。大气环流的动力和表面辐射收支的热力共同作用导致2013年夏季格陵兰冰盖表面融化经历了相对缓和的一年。展开更多
Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and art...Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.展开更多
The margin of the Greenland ice sheet has undergone rapid changes over the past decade as a result of the thinning, acceleration, and retreat of many fast-flowing tidewater outlet glaciers. Satellite observations show...The margin of the Greenland ice sheet has undergone rapid changes over the past decade as a result of the thinning, acceleration, and retreat of many fast-flowing tidewater outlet glaciers. Satellite observations show that three major tidewater outlet glaciers in Greenland retreated between 2000 and 2005, with synchronous increases in flow speed, causing a deficit in ice sheet mass budget and the potential for sea level rise. In this study, we investigated whether this acceleration was related to surface melt processes, and found that both flow speed and positive degree day (PDD) anomalies of the three glaciers varied together, indicating a causal relationship. Jakobshavn Isbr^e had lower flow speeds before 2000, during which PDD anomalies were negative, except for modest warming in 1993 and 1995. From 1999-2000, during which it is thought a threshold was passed, the flow speed of the glacier started to increase. However, the two glaciers in east Greenland showed a delayed response. Abrupt warming occurred in the vicinity of the two glaciers around 2001, but flow speed did not increase until 2003 for the Helheim Glacier, and until 2004 for the Kangerdlugssuaq Glacier. Furthermore, the two eastern glaciers switched to a deceleration mode more quickly than Jakobshavn lsbr^e. The observed differences in both acceleration and deceleration among the glaciers suggest that the relationship between surface melt and outlet glacier dynamics is not simple but complex.展开更多
Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction effic...Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.展开更多
The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homog...The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.展开更多
文摘本文重点分析了2013年夏季格陵兰冰盖表面的融化特征,并将2013年与2012年融化极值年的异常进行对比,探讨二者之间存在的动力和热力差异及其对冰盖表面融化的影响和机制。结果表明:2013年夏季格陵兰冰盖表面最大融化范围仅为44%,远小于2012年的97%,持续的时间也比2012年短20天左右,平均的融化面积和持续时间都接近气候平均态。2013年夏季大气环流异常与2012年近乎完全相反,格陵兰及附近海域为低压异常,500 h Pa位势高度场为负异常,大气环流和2012年相比更具有纬向型。格陵兰岛的北部和南部出现气旋异常,有利于输送北极的冷空气到格陵兰岛,不仅降低了夏季格陵兰冰盖表面的平均温度,而且也减少了格陵兰高温事件发生的频率。同时,2013年夏季格陵兰表面向下的辐射通量异常分布大体上呈西南—东北走向,不同于2012年的南北分布。尽管从分布上看,总的向下辐射通量以正的短波分量为主,但是长短波分量相互抵消使得2013年夏季总的向下辐射通量接近气候平均态,这使得辐射对冰盖表面温度的影响不明显。大气环流的动力和表面辐射收支的热力共同作用导致2013年夏季格陵兰冰盖表面融化经历了相对缓和的一年。
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51478385, 51208409, 51778528 and 51408486)
文摘Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.
基金Supported by the National Natural Science Foundation of China (No.40906096)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (No. Y0GQ031001)
文摘The margin of the Greenland ice sheet has undergone rapid changes over the past decade as a result of the thinning, acceleration, and retreat of many fast-flowing tidewater outlet glaciers. Satellite observations show that three major tidewater outlet glaciers in Greenland retreated between 2000 and 2005, with synchronous increases in flow speed, causing a deficit in ice sheet mass budget and the potential for sea level rise. In this study, we investigated whether this acceleration was related to surface melt processes, and found that both flow speed and positive degree day (PDD) anomalies of the three glaciers varied together, indicating a causal relationship. Jakobshavn Isbr^e had lower flow speeds before 2000, during which PDD anomalies were negative, except for modest warming in 1993 and 1995. From 1999-2000, during which it is thought a threshold was passed, the flow speed of the glacier started to increase. However, the two glaciers in east Greenland showed a delayed response. Abrupt warming occurred in the vicinity of the two glaciers around 2001, but flow speed did not increase until 2003 for the Helheim Glacier, and until 2004 for the Kangerdlugssuaq Glacier. Furthermore, the two eastern glaciers switched to a deceleration mode more quickly than Jakobshavn lsbr^e. The observed differences in both acceleration and deceleration among the glaciers suggest that the relationship between surface melt and outlet glacier dynamics is not simple but complex.
基金Project(51204037)supported by the National Natural Science Foundation of ChinaProject(N140204016)supported by the Fundamental Research Funds for the Central Universities,China
文摘Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.
文摘The present article provides mathematical modeling for melting heat and thermal radiation in stagnationpoint flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneousheterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst.Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.