The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods s...The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, whe...Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data's space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance.展开更多
文摘The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
基金supported by the National Natural Science Foundation of China(No.41474109)the China National Petroleum Corporation under grant number 2016A-33
文摘Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data's space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance.