Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio...Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.展开更多
A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects bas...A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.展开更多
With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component...With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.展开更多
文摘Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.
基金National Science and Technology Major Project of China(No.2016ZX04003001)。
文摘A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.
基金Project(51175242)supported by the National Natural Science Foundation of ChinaProject(BA2012031)supported by the Jiangsu Province Science and Technology Foundation of China
文摘With the increasing necessities for reliable printed circuit board(PCB) product, there has been a considerable demand for high speed and high precision vision positioning system. To locate a rectangular lead component with high accuracy and reliability, a new visual positioning method was introduced. Considering the limitations of Ghosal sub-pixel edge detection algorithm, an improved algorithm was proposed, in which Harris corner features were used to coarsely detect the edge points and Zernike moments were adopted to accurately detect the edge points. Besides, two formulas were developed to determine the edge intersections whose sub-pixel coordinates were calculated with bilinear interpolation and conjugate gradient method. The last experimental results show that the proposed method can detect the deflection and offset, and the detection errors are less than 0.04° and 0.02 pixels.