By the iteration of the KAM, the following second- order differential equation ( Фp (x′))′ + F(x, x′, t) + ω^PФp (x′) +α│x│^l +e(x, t) =0 is studied, where Фp(S) = │S│^p-2s, p 〉 1, α〉 0...By the iteration of the KAM, the following second- order differential equation ( Фp (x′))′ + F(x, x′, t) + ω^PФp (x′) +α│x│^l +e(x, t) =0 is studied, where Фp(S) = │S│^p-2s, p 〉 1, α〉 0 and ω 〉 0 are positive constants, and l satisfies - 1 〈ω 〈p + 2. Under some assumptions on the parities of F(x, x′, t) and e (x, t), by a small twist theorem of reversible mapping, the existence of quasi-periodic solutions and boundedness of all the solutions are obtained.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Und...In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how展开更多
This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nire...This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.展开更多
In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, ...In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, 2) 〈 β+ 1 〈 p* = Np/N-p We prove that there exists a critical value A such that the problem has at least two solutions if 0 〈 λ 〈 A; at least one solution if λ= A; and no solutions if λ〉A.展开更多
In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solu...In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solutions.Secondly,a priori estimates are given in the framework of weighted spaces.Finally,we prove the existence,uniqueness and regularity of the very weak solutions.展开更多
This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corr...This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.展开更多
This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of ...This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.展开更多
In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegat...In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.展开更多
The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity...The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.展开更多
By constructing a special cone and applying the fixed point theorem of cone compression and expansion,this paper investigates the existence of positive solutions for a class of first order singular boundary value prob...By constructing a special cone and applying the fixed point theorem of cone compression and expansion,this paper investigates the existence of positive solutions for a class of first order singular boundary value problem(BVP,for short) on unbounded domains.Moreover,an incomparable result about two positive solutions for the BVP is also obtained and an example is given to illustrate the application of the main results.展开更多
基金The National Natural Science Foundation of China(No. 11071038)the Natural Science Foundation of Jiangsu Province(No. BK2010420)
文摘By the iteration of the KAM, the following second- order differential equation ( Фp (x′))′ + F(x, x′, t) + ω^PФp (x′) +α│x│^l +e(x, t) =0 is studied, where Фp(S) = │S│^p-2s, p 〉 1, α〉 0 and ω 〉 0 are positive constants, and l satisfies - 1 〈ω 〈p + 2. Under some assumptions on the parities of F(x, x′, t) and e (x, t), by a small twist theorem of reversible mapping, the existence of quasi-periodic solutions and boundedness of all the solutions are obtained.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
基金Project supported by the National Natural Science Foundation of China (No. 10225102)the 973 Project of the Ministry of Science and Technology of China.
文摘In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how
文摘This paper deals with the existence and multiplicity of nontrivial solutions to a weighted nonlinear elliptic system with nonlinear homogeneous boundary condition in a bounded domain. By using the Caffarelli-Kohn-Nirenberg inequality and variational method, we prove that the system has at least two nontrivial solutions when the parameter λ belongs to a certain subset of R.
基金supported by Natural Science Foundation of China under Grant No. 10871110
文摘In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, 2) 〈 β+ 1 〈 p* = Np/N-p We prove that there exists a critical value A such that the problem has at least two solutions if 0 〈 λ 〈 A; at least one solution if λ= A; and no solutions if λ〉A.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.DUT13JS05)
文摘In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solutions.Secondly,a priori estimates are given in the framework of weighted spaces.Finally,we prove the existence,uniqueness and regularity of the very weak solutions.
基金supported by National Natural Science Foundation of China (Grant No. 10771219, 11071092)the PhD Specialized Grant of the Ministry of Education of China (Grant No. 20100144110001)
文摘This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.
基金the National Natural Science Foundation of China (Nos.10471013 10771024)
文摘This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.
文摘In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.
基金supported by the National Natural Science Foundation of China(No.11201292)Shanghai Natural Science Foundation(No.12ZR1444300)the Key Discipline"Applied Mathematics"of Shanghai Second Polytechnic University(No.XXKZD1304)
文摘The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.
基金Foundation item: the National Natural Science Foundation of China (No. 10671167) the Natural Science Foundation of Liaocheng University (No. 31805).
文摘By constructing a special cone and applying the fixed point theorem of cone compression and expansion,this paper investigates the existence of positive solutions for a class of first order singular boundary value problem(BVP,for short) on unbounded domains.Moreover,an incomparable result about two positive solutions for the BVP is also obtained and an example is given to illustrate the application of the main results.