针对微小型航天器星载计算机设计中存在的功能、性能与可靠性之间的矛盾,提出将可重构计算技术应用于航天领域,进行可重构星载计算机的设计.通过对可重构计算技术航天应用现状分析,从体系结构、功能、可靠性等方面进行微小卫星可重构星...针对微小型航天器星载计算机设计中存在的功能、性能与可靠性之间的矛盾,提出将可重构计算技术应用于航天领域,进行可重构星载计算机的设计.通过对可重构计算技术航天应用现状分析,从体系结构、功能、可靠性等方面进行微小卫星可重构星载计算机的研究与设计,并分析采用硬件编程实现重构配置算法的系统性能.构建基于可重构星载计算机和dSPACE仿真计算机的闭合回路仿真平台,进行上述设计的验证工作.实验表明,可重构星载计算机能够完成正常控制工作,在500 m s的控制周期下,稳态下姿态角速度的精度可达0.05°/s,通过实现对日定向与对地定向2种模式之间的切换,得到切换时间为520±40 m s,能够满足卫星对星载计算机的切换要求.展开更多
文摘针对微小型航天器星载计算机设计中存在的功能、性能与可靠性之间的矛盾,提出将可重构计算技术应用于航天领域,进行可重构星载计算机的设计.通过对可重构计算技术航天应用现状分析,从体系结构、功能、可靠性等方面进行微小卫星可重构星载计算机的研究与设计,并分析采用硬件编程实现重构配置算法的系统性能.构建基于可重构星载计算机和dSPACE仿真计算机的闭合回路仿真平台,进行上述设计的验证工作.实验表明,可重构星载计算机能够完成正常控制工作,在500 m s的控制周期下,稳态下姿态角速度的精度可达0.05°/s,通过实现对日定向与对地定向2种模式之间的切换,得到切换时间为520±40 m s,能够满足卫星对星载计算机的切换要求.