期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Adaboost及谱回归判别分析的近红外光谱固态发酵过程状态识别 被引量:5
1
作者 于霜 刘国海 +1 位作者 夏荣盛 江辉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第1期51-54,共4页
为了实现固态发酵过程状态的快速监测,以饲料蛋白固态发酵为实验对象,开展了基于近红外光谱分析技术的饲料蛋白固态发酵过程状态定性识别研究。首先利用AntarisⅡ型傅里叶变换近红外光谱仪采集140个固态发酵物样本的近红外光谱,并采用... 为了实现固态发酵过程状态的快速监测,以饲料蛋白固态发酵为实验对象,开展了基于近红外光谱分析技术的饲料蛋白固态发酵过程状态定性识别研究。首先利用AntarisⅡ型傅里叶变换近红外光谱仪采集140个固态发酵物样本的近红外光谱,并采用标准正态变换(SNV)光谱预处理方法对获得的原始光谱进行预处理;其次,采用谱回归判别分析(SRDA)法对预处理后的近红外光谱进行特征提取;最后,采用最近邻(NN)分类算法作为弱分类器建立固态发酵过程状态识别模型,并对测试集样本进行识别。结果显示,与利用主成分分析(PCA)法和线性判别分析(LDA)法提取的光谱特征建立的识别模型结果相比较,SRDA-NN识别模型获得的结果最佳,在测试集中的正确识别率达到94.28%;为了进一步提高识别模型的准确率,将自适应提升法(Adaboost)与SRDA-NN方法结合,提出了Adaboost-SRDA-NN集成学习算法来建立饲料蛋白固态发酵过程状态的在线监测模型。通过Adaboost算法提升后的SRDA-NN模型预测性能得到了进一步增强,Adaboost-SRDA-NN模型在测试集中的正确识别率达到100%。试验结果表明:在近红外光谱定性分析模型校正过程中,SRDA方法能有效地对近红外光谱数据进行特征提取,以实现维数约简;另外,Adaboost算法能很好地提升最终分类模型的预测精度。 展开更多
关键词 分析 近红外 特征提取 谱回归判别分析 ADABOOST
在线阅读 下载PDF
基于谱回归判别分析的LPP算法 被引量:2
2
作者 杨凡 张银玲 牛静 《微型机与应用》 2012年第16期38-41,共4页
判别局部保持投影DLPP算法在计算过程中需要解决稠密矩阵特征分解问题,这使得该算法在时间和内存上消耗都非常高。谱回归判别分析SRDA算法可以有效的节省时间和内存的消耗。基于SRDA,提出一种改进的局部保持投影LPP算法——谱回归判别... 判别局部保持投影DLPP算法在计算过程中需要解决稠密矩阵特征分解问题,这使得该算法在时间和内存上消耗都非常高。谱回归判别分析SRDA算法可以有效的节省时间和内存的消耗。基于SRDA,提出一种改进的局部保持投影LPP算法——谱回归判别局部保持投影算法SRDLPP。实验结果表明,该算法可以提高识别率,同时降低时间和内存消耗。 展开更多
关键词 判别局部保持投影 局部保持投影算法 谱回归判别分析 人脸识别
在线阅读 下载PDF
基于谱回归核判别分析的候机楼室内快速定位算法 被引量:2
3
作者 丁建立 穆涛 王怀超 《计算机应用》 CSCD 北大核心 2019年第1期256-261,共6页
针对机场候机楼客流量大、室内环境复杂多变的特点,提出了一种基于谱回归核判别分析(SRKDA)的室内定位算法。在离线阶段,采集已知位置的接收信号强度(RSS)数据,使用SRKDA算法提取原始位置指纹(OLF)的非线性特征生成新的特征指纹库;在线... 针对机场候机楼客流量大、室内环境复杂多变的特点,提出了一种基于谱回归核判别分析(SRKDA)的室内定位算法。在离线阶段,采集已知位置的接收信号强度(RSS)数据,使用SRKDA算法提取原始位置指纹(OLF)的非线性特征生成新的特征指纹库;在线阶段,先使用SRKDA对待定位点的RSS数据进行处理,进而使用加权K最近邻(WKNN)算法进行位置估计。定位仿真实验中,在两个不同的定位场景中,所提算法在1. 5 m定位精度下的误差累积分布函数(CDF)和定位准确率分别达到91. 2%和88. 25%,相对于核主成分分析法(KPCA)+WKNN模型分别提高了16. 7个百分点和18. 64个百分点,相对于KDA+WKNN模型分别提高了3. 5个百分点和9. 07个百分点;在大量离线样本(大于1 100条)的情况下,该算法数据处理时间远小于KPCA和KDA。实验结果表明,所提算法能够提高室内定位精度,同时节省了数据处理时间,提高了定位效率。 展开更多
关键词 回归判别分析 室内定位算法 接收信号强度 位置指纹 非线性特征提取
在线阅读 下载PDF
柑橘黄龙病检测的近红外光谱集成建模方法 被引量:5
4
作者 贺胜晖 李灵巧 +2 位作者 刘彤 刘振丙 杨辉华 《分析科学学报》 CAS CSCD 北大核心 2020年第2期287-290,共4页
针对黄龙病检测问题,提出了一种集成了多特征提取模型和多分类器的柑橘黄龙病检测算法。将谱回归核判别分析和主成分分析并行融合进行特征提取,将偏最小二乘判别分析、决策树和支持向量机利用Stacking策略融合完成分类任务。基于3个主... 针对黄龙病检测问题,提出了一种集成了多特征提取模型和多分类器的柑橘黄龙病检测算法。将谱回归核判别分析和主成分分析并行融合进行特征提取,将偏最小二乘判别分析、决策树和支持向量机利用Stacking策略融合完成分类任务。基于3个主要柑橘品种共1620条近红外光谱数据,与单特征提取单分类器方法和多特征提取单分类器方法进行对比,集成分类模型的正确率可达98.52%,精度在98.57%以上,F2得分可达98.01%。实验结果表明,集成分类模型明显优于单特征提取单分类模型和多特征提取单分类模型,证明利用集成分类模型进行柑橘黄龙病的无损检测是可行的,为其他领域的光谱分类提供参考。 展开更多
关键词 集成学习 黄龙病 近红外光 回归判别分析 Stacking策略
在线阅读 下载PDF
分数阶微分预处理及PCA-SRDA的多模型融合对红富士苹果产地溯源 被引量:2
5
作者 黄华 南梦迪 +3 位作者 李政浩 陈秋颖 李廷杰 郭俊先 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第10期3249-3255,共7页
苹果产地溯源具有重要的应用价值和现实意义。为了探寻苹果产地溯源新方法,以红富士品种为研究对象,以新疆阿克苏、山东烟台、陕西洛川三个产地671个红富士苹果样本为试材,分别采集其590~1250 nm的近红外透射光谱,然后基于分数阶微分(FD... 苹果产地溯源具有重要的应用价值和现实意义。为了探寻苹果产地溯源新方法,以红富士品种为研究对象,以新疆阿克苏、山东烟台、陕西洛川三个产地671个红富士苹果样本为试材,分别采集其590~1250 nm的近红外透射光谱,然后基于分数阶微分(FD)及主成分分析(PCA)-谱回归判别分析(SRDA)进行多模型融合,构建红富士苹果产地溯源的集成学习模型。首先,将经过光谱校正后的光谱数据划分为训练集和测试集,并利用分数阶微分预处理训练集光谱,获取不同阶次(取0~2阶,步长为0.1)的分数阶微分光谱;结合不同阶次的分数阶微分光谱及PCA-SRDA算法构建基学习器,将基学习器预测结果构成一个新训练集,并通过决策树算法完成模型融合,得到最终分类预测模型;随后,采用对应阶次的分数阶微分预处理测试集光谱,并基于已建立的基学习器,获得测试集相应的预测结果;最后,将预测结果构成一个新测试集,并基于已建立的分类预测模型,输出最终的预测结果。按7∶3比例随机划分样本集,并进行200次重复实验。结果表明,结合不同阶次的分数阶微分预处理及线性判别分析(LDA)、SRDA、PCA-LDA、PCA-SRDA算法建立多模型融合集成学习模型,具有较好的鉴别效果和较强的鲁棒性,其中,FD-PCA-SRDA多模型融合集成学习模型为最优,其训练集的平均精度为97.33%,标准差为0.49%,测试集的平均精度为94.84%,标准差为1.48%。故,分数阶微分技术及PCA-SRDA算法结合近红外透射光谱可成功、有效地实现苹果产地溯源。 展开更多
关键词 近红外透射光 分数阶微分 主成分分析-谱回归判别分析 苹果 产地溯源
在线阅读 下载PDF
基于扩展CENTRIST的遥感场景分类
6
作者 马瑾 袁宝华 王欢 《计算机应用与软件》 北大核心 2021年第2期126-131,139,共7页
提出一种基于扩展CENTRIST纹理算子的遥感场景分类方法。它由更多邻域规模的三个子方案组成,不仅继承了CENTRIST的优点,而且编码了更多不同纹理的局部结构信息。通过三种不同模式的纹理算子来提取多通道图像纹理特征,通过谱回归判别分... 提出一种基于扩展CENTRIST纹理算子的遥感场景分类方法。它由更多邻域规模的三个子方案组成,不仅继承了CENTRIST的优点,而且编码了更多不同纹理的局部结构信息。通过三种不同模式的纹理算子来提取多通道图像纹理特征,通过谱回归判别分析进行分类识别。提出能够捕获多通道图像中互补信息的多通道eCT融合机制,以获得更高的分类准确率。在UC Merced标准数据库上的实验表明,该方法得到的结果比CENTRIST效果更好,鲁棒性更高。 展开更多
关键词 场景分类 CENTRIST 扩展CENTRIST 多通道描述符 谱回归判别分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部