为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循...为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循环单元(bidirectional gate recurrent unit,BiGRU)声纹识别算法。首先,利用基于F统计量的MFCC对声纹数据进行加权特征提取,突出重要特征并减弱噪声的影响,然后利用OCSVM对加权后的特征进行异常检测并去除异常值,提高数据质量。为解决样本不平衡问题,采用合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)进行声纹样本的均衡。最后,应用基于贝叶斯优化的BiGRU模型进行声纹识别。以某气体绝缘全封闭组合电器(gas insulated switchgear,GIS)为例,采集了20类不同工况下操纵机构的声音样本,与多种经典分类模型进行对比。结果显示,所提算法取得的最高平均识别准确率达到了92.8%,相比于自适应增强、朴素贝叶斯和线性判别分析算法分别提升了30.1%、14.7%和11.5%。通过消融实验进一步评估和验证了所提算法各个流程对声纹识别的实际效果和性能影响,研究成果可为GIS设备异常工况的声纹识别提供高效技术路线。展开更多
针对风电场规划中风速的高随机性问题,提出了一种基于小样本空时融合压缩残差网络点预测(spatio-temporal integration and compression deep residual,STiCDRS)模型。该模型旨在深入挖掘风速序列中的空间和时间特征,以提升点预测精度...针对风电场规划中风速的高随机性问题,提出了一种基于小样本空时融合压缩残差网络点预测(spatio-temporal integration and compression deep residual,STiCDRS)模型。该模型旨在深入挖掘风速序列中的空间和时间特征,以提升点预测精度。首先,采用空时融合压缩残差网络点预测模型得到点预测结果。然后,在此基础上采用新颖的空时融合压缩残差网络区间(STiCDRS-Gaussian process regression,STiCDRS-GPR)预测模型得到风速的区间预测结果,进而得到更为可靠的风速概率预测结果。该模型采用贝叶斯优化方法进行超参数选择,确保超参数的高效自动化调优。最后,使用内蒙古地区风电场的风速数据集,将STiCDRS模型与传统经典模型的预测结果进行对比。实验结果表明,相较于其他模型,所提STiCDRS-GPR模型在风速预测中具有更高的点预测精度、适宜的预测区间以及可靠的概率预测结果,充分展示了其在风速预测领域的良好应用潜力。展开更多
文摘针对风电场规划中风速的高随机性问题,提出了一种基于小样本空时融合压缩残差网络点预测(spatio-temporal integration and compression deep residual,STiCDRS)模型。该模型旨在深入挖掘风速序列中的空间和时间特征,以提升点预测精度。首先,采用空时融合压缩残差网络点预测模型得到点预测结果。然后,在此基础上采用新颖的空时融合压缩残差网络区间(STiCDRS-Gaussian process regression,STiCDRS-GPR)预测模型得到风速的区间预测结果,进而得到更为可靠的风速概率预测结果。该模型采用贝叶斯优化方法进行超参数选择,确保超参数的高效自动化调优。最后,使用内蒙古地区风电场的风速数据集,将STiCDRS模型与传统经典模型的预测结果进行对比。实验结果表明,相较于其他模型,所提STiCDRS-GPR模型在风速预测中具有更高的点预测精度、适宜的预测区间以及可靠的概率预测结果,充分展示了其在风速预测领域的良好应用潜力。