期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于三次卷积插值的贝叶斯滤波方法研究 被引量:3
1
作者 王帅 冯晋 《系统科学与数学》 CSCD 北大核心 2015年第2期170-180,共11页
针对一类二维空间系统的状态估计模型,提出了一种用三次卷积插值方法递推估计的非线性滤波算法.仿真实例采用一个常用的非线性模型,并与粒子滤波算法进行对比分析,仿真结果表明三次卷积插值方法提高滤波估计精度,从而验证其估计一类状... 针对一类二维空间系统的状态估计模型,提出了一种用三次卷积插值方法递推估计的非线性滤波算法.仿真实例采用一个常用的非线性模型,并与粒子滤波算法进行对比分析,仿真结果表明三次卷积插值方法提高滤波估计精度,从而验证其估计一类状态估计模型解析解的可行性,其插值算法还可以推广到多维空间系统. 展开更多
关键词 卷积插值 贝叶斯估计滤波 状态估计模型
原文传递
机动目标跟踪的非线性算法
2
作者 于国桥 张安清 《火力与指挥控制》 CSCD 北大核心 2007年第6期15-17,24,共4页
卡尔曼滤波器对线性高斯滤波问题能提供最优解,而对目标运动模型、观测方程等要求的非线性就不再适合,提出了一种机动目标自适应非线性粒子滤波算法-“粒子滤波器”(Particle Filters PF)法,这种方法不受线性化误差和高斯噪声假定的限制... 卡尔曼滤波器对线性高斯滤波问题能提供最优解,而对目标运动模型、观测方程等要求的非线性就不再适合,提出了一种机动目标自适应非线性粒子滤波算法-“粒子滤波器”(Particle Filters PF)法,这种方法不受线性化误差和高斯噪声假定的限制,适用于任何状态转换或测量模型,分析比较了粒子滤波(PF)与扩展卡尔曼滤波算法(EKF)的滤波精度、运算量等方面指标。给出了基于典型非线性模型的算法仿真,仿真结果表明粒子滤波新方法优于EKF对机动目标跟踪。 展开更多
关键词 机动目标跟踪 粒子滤波 序列蒙特卡洛 贝叶斯估计
在线阅读 下载PDF
Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond 被引量:9
3
作者 Tian-cheng LIn Jin-ya SU +1 位作者 Wci LIU Juan M. CORCHADO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第12期1913-1939,共27页
Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that... Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity. 展开更多
关键词 Kalman filter Gaussian filter Time series estimation Bayesian filtering Nonlinear filtering Constrained filtering Gaussian mixture MANEUVER Unknown inputs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部