期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SNN-密度峰值聚类算法的商业用户典型负荷模式提取
被引量:
2
1
作者
王俊
肖辉
+1 位作者
王家奇
龙飞宇
《电力学报》
2023年第1期64-72,共9页
对商业用户典型负荷进行精确、迅速、高效地提取及分类,是电网公司摸清商业用户用电行为和需求规律不可或缺的重要工作。大数据背景下传统聚类算法用于高维汇集、类簇结果差别大的商业用户负荷曲线时,存在截断距离选取困难、聚类效果不...
对商业用户典型负荷进行精确、迅速、高效地提取及分类,是电网公司摸清商业用户用电行为和需求规律不可或缺的重要工作。大数据背景下传统聚类算法用于高维汇集、类簇结果差别大的商业用户负荷曲线时,存在截断距离选取困难、聚类效果不够清晰、负荷模式提取效率低等问题,为此,提出一个改善局部密度测量和聚类中心点选取的算法。首先,将数据预处理,剔除掉完整程度较低的负荷曲线;接着,运用PCA分析方法降低处理后的商业用户负荷曲线维度,并在构建样本点共享邻域集合的基础上利用改进SNN-DPC算法计算出距离矩阵,代替原算法的距离矩阵作为输入数据;然后在重新定义SNN相似度、样本局部密度ρ和距离最大密度点距离δ的算法计算基础上,利用拐点确认聚类中心,并完成对抽样曲线的聚类分析。总之,改进算法通过样本点之间的共享近邻定义样本的相似性,精准分析了一些多维异构的负荷数据,通过拐点实现了真实聚类中心点的确定,解决了主观意志择取聚类中心的问题,从而大幅度提升负荷聚类效果。算例结果表明:1)对于商业用户实测负荷数据集,所提算法能够更加准确选择聚类中心,运行效率高。2)相对于传统的算法,基于该改进算法所提出负荷模式识别模型可以更好地帮助电网公司分析用户的用电特性,验证了该模型针对不同商业用户典型负荷模式可以进行更加精确地识别。综上,所提策略在现实商业用户场景下存在效能优势。
展开更多
关键词
智能电网
用电
负荷
数据
商业用户
负荷
曲线聚类
负荷模式提取
密度峰值聚类算法
SNN
数据处理
在线阅读
下载PDF
职称材料
题名
基于SNN-密度峰值聚类算法的商业用户典型负荷模式提取
被引量:
2
1
作者
王俊
肖辉
王家奇
龙飞宇
机构
长沙理工大学电气与信息工程学院
出处
《电力学报》
2023年第1期64-72,共9页
基金
长沙市自然科学基金(kq2202213)。
文摘
对商业用户典型负荷进行精确、迅速、高效地提取及分类,是电网公司摸清商业用户用电行为和需求规律不可或缺的重要工作。大数据背景下传统聚类算法用于高维汇集、类簇结果差别大的商业用户负荷曲线时,存在截断距离选取困难、聚类效果不够清晰、负荷模式提取效率低等问题,为此,提出一个改善局部密度测量和聚类中心点选取的算法。首先,将数据预处理,剔除掉完整程度较低的负荷曲线;接着,运用PCA分析方法降低处理后的商业用户负荷曲线维度,并在构建样本点共享邻域集合的基础上利用改进SNN-DPC算法计算出距离矩阵,代替原算法的距离矩阵作为输入数据;然后在重新定义SNN相似度、样本局部密度ρ和距离最大密度点距离δ的算法计算基础上,利用拐点确认聚类中心,并完成对抽样曲线的聚类分析。总之,改进算法通过样本点之间的共享近邻定义样本的相似性,精准分析了一些多维异构的负荷数据,通过拐点实现了真实聚类中心点的确定,解决了主观意志择取聚类中心的问题,从而大幅度提升负荷聚类效果。算例结果表明:1)对于商业用户实测负荷数据集,所提算法能够更加准确选择聚类中心,运行效率高。2)相对于传统的算法,基于该改进算法所提出负荷模式识别模型可以更好地帮助电网公司分析用户的用电特性,验证了该模型针对不同商业用户典型负荷模式可以进行更加精确地识别。综上,所提策略在现实商业用户场景下存在效能优势。
关键词
智能电网
用电
负荷
数据
商业用户
负荷
曲线聚类
负荷模式提取
密度峰值聚类算法
SNN
数据处理
Keywords
smart grid
electricity load data
business customer
load curve clustering
load pattern extraction
density peak clustering algorithm
SNN
data processing
分类号
TM714 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SNN-密度峰值聚类算法的商业用户典型负荷模式提取
王俊
肖辉
王家奇
龙飞宇
《电力学报》
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部