When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor...When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.展开更多
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph...Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.展开更多
This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via ...This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via a converter connected to a single capacitor on the DC side. Since the converter/capacitor model is nonlinear, the sliding mode technique constitutes a powerful tool to ensure the DC-bus voltage regulation. The computer simulations are provided to verify the validity of the proposed control algorithm.展开更多
A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the...A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.展开更多
A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanc...A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanced AC loading. The unbalanced load is characterized in the d-q-0 rotating coordinate based on symmetrical sequence components. Also, the mathematical model of the load converter in both a-b-c and d-q-0 coordinates is derived by using the average large signal model. Then, two control strategies for the load converter are presented. The first one uses the conventional d-q-0 controller to ensure the voltage and current regulation. The second one is a newly proposed control strategy based on the decomposition of the voltage and current into in-stantaneous positive, negative, and zero sequences. These three sequences are controlled independently in their own reference frames as DC signals. The performance of the load converter using these two control strategies is compared. Simulation results show the validity and capability of the newly proposed control strategy.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219700)
文摘When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.
基金This research was partially supported by the National Grand Fundamental Research 973 Program of China under Grant (No. 2013CB329103), Natural Science Foundation of China grant (No. 61271171), the Fundamental Research Funds for the Central Universities (ZYGX2013J002, ZYGX2012J004, ZYGX2010J002, ZYGX2010J009), Guangdong Science and Technology Project (2012B090500003, 2012B091000163, 2012556031).
文摘Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.
文摘This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via a converter connected to a single capacitor on the DC side. Since the converter/capacitor model is nonlinear, the sliding mode technique constitutes a powerful tool to ensure the DC-bus voltage regulation. The computer simulations are provided to verify the validity of the proposed control algorithm.
文摘A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.
文摘A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanced AC loading. The unbalanced load is characterized in the d-q-0 rotating coordinate based on symmetrical sequence components. Also, the mathematical model of the load converter in both a-b-c and d-q-0 coordinates is derived by using the average large signal model. Then, two control strategies for the load converter are presented. The first one uses the conventional d-q-0 controller to ensure the voltage and current regulation. The second one is a newly proposed control strategy based on the decomposition of the voltage and current into in-stantaneous positive, negative, and zero sequences. These three sequences are controlled independently in their own reference frames as DC signals. The performance of the load converter using these two control strategies is compared. Simulation results show the validity and capability of the newly proposed control strategy.