期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv10的轻量化目标检测算法
1
作者
刘印
龚长友
徐国栋
《自动化与信息工程》
2025年第1期29-35,共7页
针对目标检测算法部署在边缘设备的轻量化需求,提出一种基于改进YOLOv10的轻量化目标检测算法(CMD-YOLO算法)。该算法利用跨尺度特征融合模块对YOLOv10算法的网络结构进行改进,减少了算法模型的参数量与计算量;采用基于Mamba的线性注意...
针对目标检测算法部署在边缘设备的轻量化需求,提出一种基于改进YOLOv10的轻量化目标检测算法(CMD-YOLO算法)。该算法利用跨尺度特征融合模块对YOLOv10算法的网络结构进行改进,减少了算法模型的参数量与计算量;采用基于Mamba的线性注意力机制改进的部分自注意力模块替换传统的部分自注意力模块,进一步降低了算法模型的参数量;利用空间深度转换卷积模块替换部分传统卷积模块,增强了算法模型对下采样细节信息的提取能力;利用动态上采样器DySample替换传统的上采样模块,在保持上采样精度的同时,降低了算法模型的计算延迟。实验结果表明,CMD-YOLO算法与YOLOv10-n算法相比,在检测精度略微提升的同时,算法模型参数量降低了30.5%,计算量下降了19%,权重文件缩小了29.3%,计算延迟减少了8.8%,能够满足目标检测算法部署在边缘设备中的轻量化需求。
展开更多
关键词
目标检测算法
YOLOv10算法
跨尺度特征融合模块
Mamba线性注意力机制
空间深度转换卷积
模块
动态上采样器
在线阅读
下载PDF
职称材料
基于改进Deformable DETR的无人机视频流车辆目标检测算法
被引量:
2
2
作者
江志鹏
王自全
+4 位作者
张永生
于英
程彬彬
赵龙海
张梦唯
《计算机工程与科学》
CSCD
北大核心
2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法...
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。
展开更多
关键词
Deformable
DETR
目标检测
跨尺度特征融合模块
object
query挤压-激励
在线难样本挖掘
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv10的轻量化目标检测算法
1
作者
刘印
龚长友
徐国栋
机构
西南林业大学
新疆生产建设兵团兴新职业技术学院
出处
《自动化与信息工程》
2025年第1期29-35,共7页
文摘
针对目标检测算法部署在边缘设备的轻量化需求,提出一种基于改进YOLOv10的轻量化目标检测算法(CMD-YOLO算法)。该算法利用跨尺度特征融合模块对YOLOv10算法的网络结构进行改进,减少了算法模型的参数量与计算量;采用基于Mamba的线性注意力机制改进的部分自注意力模块替换传统的部分自注意力模块,进一步降低了算法模型的参数量;利用空间深度转换卷积模块替换部分传统卷积模块,增强了算法模型对下采样细节信息的提取能力;利用动态上采样器DySample替换传统的上采样模块,在保持上采样精度的同时,降低了算法模型的计算延迟。实验结果表明,CMD-YOLO算法与YOLOv10-n算法相比,在检测精度略微提升的同时,算法模型参数量降低了30.5%,计算量下降了19%,权重文件缩小了29.3%,计算延迟减少了8.8%,能够满足目标检测算法部署在边缘设备中的轻量化需求。
关键词
目标检测算法
YOLOv10算法
跨尺度特征融合模块
Mamba线性注意力机制
空间深度转换卷积
模块
动态上采样器
Keywords
object detection algorithm
YOLOv10 algorithm
cross-scale feature fusion module
Mamba-like linear attention mechanism
space to depth Conv module
dynamic UpSampler
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进Deformable DETR的无人机视频流车辆目标检测算法
被引量:
2
2
作者
江志鹏
王自全
张永生
于英
程彬彬
赵龙海
张梦唯
机构
战略支援部队信息工程大学地理空间信息学院
[
出处
《计算机工程与科学》
CSCD
北大核心
2024年第1期91-101,共11页
基金
国家自然科学基金(42071340)。
文摘
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。
关键词
Deformable
DETR
目标检测
跨尺度特征融合模块
object
query挤压-激励
在线难样本挖掘
Keywords
Deformable DETR
object detection
cross-scale feature fusion module
object query squeeze-and-excitation
online hard sample mining
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv10的轻量化目标检测算法
刘印
龚长友
徐国栋
《自动化与信息工程》
2025
0
在线阅读
下载PDF
职称材料
2
基于改进Deformable DETR的无人机视频流车辆目标检测算法
江志鹏
王自全
张永生
于英
程彬彬
赵龙海
张梦唯
《计算机工程与科学》
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部