期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
汽车液压防抱死制动系统轮缸压力估计研究 被引量:1
1
作者 司洪龙 李锐 郑太雄 《科技视界》 2014年第3期9-9,19,共2页
汽车液压防抱死制动系统轮缸压力估算在对汽车ABS中的轮缸压力精细调节中具有重要的意义。在建立液压制动系统单回路液压制动系统模型的基础上,结合流量动力学特性得到汽车液压制动系统轮缸的数学关系,利用机电相似理论将液压制动的机... 汽车液压防抱死制动系统轮缸压力估算在对汽车ABS中的轮缸压力精细调节中具有重要的意义。在建立液压制动系统单回路液压制动系统模型的基础上,结合流量动力学特性得到汽车液压制动系统轮缸的数学关系,利用机电相似理论将液压制动的机械系统转化为电学系统,在对电学系统进行电学分析的基础上,通过对电学系统中电参量的测量由机电相似关系得到机械系统中相对应的参量,从而对汽车液压防抱死制动系统中轮缸压力进行估计。结果表明,可通过电学系统特性分析相应汽车液压防抱死制动系统的机械系统特性,对轮缸压力进行估计,为以后更加深入的研究奠定基础,同时可以缩短开发液压制动系统的周期,降低开发成本。 展开更多
关键词 汽车液压防抱死制动系统 轮缸压力估计 机电相似理论 油压变化率
在线阅读 下载PDF
汽车线控液压制动系统轮缸液压力估计算法研究
2
作者 吴浩 王维领 余裕 《汽车工程师》 2024年第4期24-32,共9页
针对八阀结构的集成式线控液压制动系统液压控制单元(HCU)轮缸压力估计算法估计精度不足的问题,提出一种可替代压力传感器的轮缸液压力估计算法。首先基于伯努利原理提出了轮缸液压力估计算法,然后基于硬件在环台架测试分析液压调节单... 针对八阀结构的集成式线控液压制动系统液压控制单元(HCU)轮缸压力估计算法估计精度不足的问题,提出一种可替代压力传感器的轮缸液压力估计算法。首先基于伯努利原理提出了轮缸液压力估计算法,然后基于硬件在环台架测试分析液压调节单元的基本特性以及制动液的体积刚度(PV)特性,最后通过实车试验进行了验证。结果表明,所提出的轮缸压力估计算法在基础制动工况下的均方根误差在0.259 MPa以内,主动制动工况下均方根误差在0.374 MPa以内,与加装压力传感器的方案精度相当。 展开更多
关键词 线控液压制动系统 轮缸压力估计 体积刚度特性 伯努利原理
在线阅读 下载PDF
无压力传感器下的电子液压制动系统轮缸液压力控制 被引量:13
3
作者 熊璐 杨兴 +2 位作者 冷搏 崔天宝 韩伟 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第8期1199-1207,共9页
线控电子液压制动系统作为下一代汽车制动系统的主流解决方案,其轮缸液压力控制是实现车辆稳定性控制等主动安全功能的基础。针对四阀结构的集成式电子液压制动系统的成本与冗余问题,提出一种无轮缸压力传感器下的轮缸液压力控制策略。... 线控电子液压制动系统作为下一代汽车制动系统的主流解决方案,其轮缸液压力控制是实现车辆稳定性控制等主动安全功能的基础。针对四阀结构的集成式电子液压制动系统的成本与冗余问题,提出一种无轮缸压力传感器下的轮缸液压力控制策略。通过台架测试分析液压调节单元的工作特性,提出基于伯努利方程与轮缸PV(pressure volume)特性相结合的轮缸液压力估计方法,设计电磁阀开闭逻辑及基于减压优先的轮缸液压力均衡控制策略,最后通过台架试验进行对比验证。试验结果表明,所提出方法的液压力控制均方根误差在0.21MPa以内,与有液压力传感器方案的控制精度相当。 展开更多
关键词 电子液压制动系统 压力控制 压力估计 四阀液控单元
在线阅读 下载PDF
考虑主、轮缸液压力差异的制动增强控制 被引量:2
4
作者 史彪飞 熊璐 +5 位作者 刘洋 舒强 冷搏 陈锋 傅直全 姚雪平 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第11期1667-1675,共9页
现有电子液压制动系统(EHB)在常规制动工况下均是以主缸液压力传感器为反馈进行液压力控制,而忽略了主、轮缸液压力的差异性对制动控制带来的影响。针对此,首先通过电磁阀测试台架测试了液压控制单元(HCU)增压阀在全开工况下的正、反向... 现有电子液压制动系统(EHB)在常规制动工况下均是以主缸液压力传感器为反馈进行液压力控制,而忽略了主、轮缸液压力的差异性对制动控制带来的影响。针对此,首先通过电磁阀测试台架测试了液压控制单元(HCU)增压阀在全开工况下的正、反向的压差流量特性。之后,通过制动测试台架测试了轮缸压力体积(PV)特性,建立了非极限工况下的主、轮缸液压力的动态模型,并通过试验数据验证了模型的准确性。将由上述模型估计的轮缸液压力作为反馈,替换原始的主缸液压力传感器信号,引入到EHB的液压力控制算法中,而并不改变原控制算法。基于经典控制理论,分析了该新控制系统的快速性和稳定性。最后进行了液压力控制的实车试验,结果表明,在相同的目标阶跃工况下,相比于主缸液压力反馈控制,所提出的新控制系统可将轮缸液压力及制动减速度的响应速度提高12%左右,从而缩短紧急制动工况下的制动距离。此外,由于估算的轮缸液压力比主缸液压力更加平稳且没有超调,新控制系统在快速建压过程中运行更加平稳,显著提升噪声、振动与声振粗糙度(NVH)性能。最后,多工况下的实车试验表明新控制系统是稳定的。 展开更多
关键词 电子液压制动系统 电磁阀压差流量特性 压力体积特性 压力估计 制动增强控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部