制备了含功能团-COOH的聚合物载体和聚合物载体稀土复合物P-COO.N dC l3。考察了致孔剂用量和交联度对聚合载体骨架结构的影响。实验结果表明,聚合物载体负载金属离子的能力与聚合物载体的骨架结构有关,聚合物稀土复合物是通过官能团的...制备了含功能团-COOH的聚合物载体和聚合物载体稀土复合物P-COO.N dC l3。考察了致孔剂用量和交联度对聚合载体骨架结构的影响。实验结果表明,聚合物载体负载金属离子的能力与聚合物载体的骨架结构有关,聚合物稀土复合物是通过官能团的羰基氧原子与稀土离子配位。P-COO.N dC l3对丁二烯聚合的催化活性与其骨架结构和负载金属的量有关。聚丁二烯顺-1,4结构含量在98%以上。展开更多
As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expre...As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells. These modifications include utilization of different promoters and signal peptides, deletion or replacement of viral genes for increasing protein secretion, integration of polycistronic expression cassette for producing protein complexes, and baculovirus pseudotyping, promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery. This review summarizes the development and the current state of art of the baculovirus expression system. Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.展开更多
The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in ...The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.展开更多
TI(I) in water even at a trace level is fatal to human beings and the ecosystem. Here we fabricated a new polymer-supported nanocomposite (HMO-001) for efficient TI(I) removal by encapsulating nanosized hydrous ...TI(I) in water even at a trace level is fatal to human beings and the ecosystem. Here we fabricated a new polymer-supported nanocomposite (HMO-001) for efficient TI(I) removal by encapsulating nanosized hydrous manganese dioxide (HMO) within a polystyrene cation exchanger (D-001). The resultant HMO-001 exhibited more preferable removal of TI(I) than D-001 and IRC-748, an iminodiacetic chelating polymer, particularly in the presence of competing Ca(II) ions at greater levels in solution. Such preference was ascribed to the Donnan membrane effect caused by D-001 as well as the specific interaction between TI(I) and HMO. The adsorbed TI(I) was partially oxidized into insoluble TI(III) by HMO at acidic pH, while negligible oxidation was observed at circumneutral pH. The exhausted HMO-001 was amenable to efficient regeneration by binary NaOH-NaC10 solution for at least 10-cycle batch runs without any significant capacity loss. Fixed-bed column test of Tl(I)-contained indus- trial effluent and natural water further validated that TI(I) retention on HMO-001 resulted in a conspicuous concentration drop from 1.3 mg/L to a value lower than 0.14 mg/L (maximum concentration level for industrial effluent regulated by US EPA) and from 1-4 μg/L to a value lower than 0.1 μg/L (drinking water standard regulated by China Health Ministry), respectively.展开更多
文摘制备了含功能团-COOH的聚合物载体和聚合物载体稀土复合物P-COO.N dC l3。考察了致孔剂用量和交联度对聚合载体骨架结构的影响。实验结果表明,聚合物载体负载金属离子的能力与聚合物载体的骨架结构有关,聚合物稀土复合物是通过官能团的羰基氧原子与稀土离子配位。P-COO.N dC l3对丁二烯聚合的催化活性与其骨架结构和负载金属的量有关。聚丁二烯顺-1,4结构含量在98%以上。
基金The Knowledge Innovation Program of the Chinese Academy of Sciences,(No.KSCX2-EW-G-8)the National Basic Research Program of China program(No.2009CB118903)
文摘As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells. These modifications include utilization of different promoters and signal peptides, deletion or replacement of viral genes for increasing protein secretion, integration of polycistronic expression cassette for producing protein complexes, and baculovirus pseudotyping, promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery. This review summarizes the development and the current state of art of the baculovirus expression system. Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.
基金financially supported by the National Natural Science Foundation of China(No.21276086)
文摘The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.
基金financially supported by the National Natural Science Foundation of China(51078179)Natural Science Foundation of Jiangsu Province(BK2012017/2011016)+1 种基金State Key Scientific Project for Water Pollution Control and Treatment(2012ZX07206003)Program for New Century Excellent Talents in University of China(NCET10-0490)
文摘TI(I) in water even at a trace level is fatal to human beings and the ecosystem. Here we fabricated a new polymer-supported nanocomposite (HMO-001) for efficient TI(I) removal by encapsulating nanosized hydrous manganese dioxide (HMO) within a polystyrene cation exchanger (D-001). The resultant HMO-001 exhibited more preferable removal of TI(I) than D-001 and IRC-748, an iminodiacetic chelating polymer, particularly in the presence of competing Ca(II) ions at greater levels in solution. Such preference was ascribed to the Donnan membrane effect caused by D-001 as well as the specific interaction between TI(I) and HMO. The adsorbed TI(I) was partially oxidized into insoluble TI(III) by HMO at acidic pH, while negligible oxidation was observed at circumneutral pH. The exhausted HMO-001 was amenable to efficient regeneration by binary NaOH-NaC10 solution for at least 10-cycle batch runs without any significant capacity loss. Fixed-bed column test of Tl(I)-contained indus- trial effluent and natural water further validated that TI(I) retention on HMO-001 resulted in a conspicuous concentration drop from 1.3 mg/L to a value lower than 0.14 mg/L (maximum concentration level for industrial effluent regulated by US EPA) and from 1-4 μg/L to a value lower than 0.1 μg/L (drinking water standard regulated by China Health Ministry), respectively.