Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating effici...Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating efficiency, performance, safety, and habitability of a vessel and its subsystems. In the following research, the life cycle of vessels was divided into 9 phases, and 15 research subjects were also identified from among these phases. The 15 subjects were systemized, and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0), which is a systematical modeling method. This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included, which brings the formerly relatively independent subjects together as a whole. The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels, especially at the conceptual and embodiment design phases. The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work.展开更多
To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist prod...To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist productivity index (MPI) in this paper. An approach based on both panel data and multi-inputs/outputs is considered comprehensively, and aims at measuring the operating efficiencies of 10 leading container ports in China from 2001 to 2006 by applying this new systematic influence factor of total factor productivity change is the calculation method. The results illustrate that the main technology change, and the container transportation of these 10 ports is on the healthy development status and will recover and grow reposefully in the following years展开更多
This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be app...This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.展开更多
Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that per...Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that perturbs betatron motion of particles, including dynamic β, dynamic emittance and beam-beam tune-shifts; while the nonlinear force may excite resonances and cause tune-spread. With the weak-strong beam-beam mode, the linear and nonlinear effects are studied, dynamic βand dy- namic emittance as functions of tunes are analyzed, and formulas of beam-beam octupole caused tune-spread are derived, starting from beam-beam potential and equations of particle motions, and the measures to increase luminosity of BEPCII are discussed.展开更多
基金Supported by the Fundamental Research Program of CSTIND under Grant No.GF2007004Harbin Engineering University Central Foundation under Grant No.HEUCF100718
文摘Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating efficiency, performance, safety, and habitability of a vessel and its subsystems. In the following research, the life cycle of vessels was divided into 9 phases, and 15 research subjects were also identified from among these phases. The 15 subjects were systemized, and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0), which is a systematical modeling method. This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included, which brings the formerly relatively independent subjects together as a whole. The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels, especially at the conceptual and embodiment design phases. The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work.
基金the National Natural Science Foundation of China (No. 50578030)
文摘To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist productivity index (MPI) in this paper. An approach based on both panel data and multi-inputs/outputs is considered comprehensively, and aims at measuring the operating efficiencies of 10 leading container ports in China from 2001 to 2006 by applying this new systematic influence factor of total factor productivity change is the calculation method. The results illustrate that the main technology change, and the container transportation of these 10 ports is on the healthy development status and will recover and grow reposefully in the following years
基金supported by the National Natural Science Foundation of China (Grant No. 51075407)the Fundamental Research Funds for the Central Universities (Grant No. CDJXS11111143)
文摘This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.
文摘Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that perturbs betatron motion of particles, including dynamic β, dynamic emittance and beam-beam tune-shifts; while the nonlinear force may excite resonances and cause tune-spread. With the weak-strong beam-beam mode, the linear and nonlinear effects are studied, dynamic βand dy- namic emittance as functions of tunes are analyzed, and formulas of beam-beam octupole caused tune-spread are derived, starting from beam-beam potential and equations of particle motions, and the measures to increase luminosity of BEPCII are discussed.