期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
连续时间参数下马尔可夫过程的可逆性
1
作者 程维虎 陈奇志 胡京兴 《数理统计与应用概率》 1995年第4期31-34,共4页
本文是在文献[1]的基础之上,给出了连续时间参数下可逆马尔可夫过程所具有的几个性质,并建立了连续时间参数下马尔可夫过程可逆的充分必要条件。
关键词 马氏过程 可逆性 连续时间参数
在线阅读 下载PDF
一类连续时间参数的随机图过程的平稳分布
2
作者 韩东 《Chinese Quarterly Journal of Mathematics》 CSCD 1994年第2期64-68,共5页
A continuous-time random graph process with state space consisting of the simple and directed graphs on N vertices is introduced.We obtain the stationary distribution of the process under different couditions and pro... A continuous-time random graph process with state space consisting of the simple and directed graphs on N vertices is introduced.We obtain the stationary distribution of the process under different couditions and prove that the stationary distribution is unique. 展开更多
关键词 连续时间参数 随机图过程 平稳分布
在线阅读 下载PDF
基于Markov模型的离散事件系统稳态与暂态的分析 被引量:2
3
作者 汪一亭 魏臻 《计算机工程与应用》 CSCD 北大核心 2009年第3期226-228,共3页
利用马尔科夫链的结果,在离散事件系统(DES)逻辑层次的自动机模型基础上,对DES的Markov模型的稳态和暂态特性,分别从时间参数连续和离散的情况下,分四个情况进行了分析,通过实例对系统遍历性提出了一条更简单的且在连续和离散时间参数... 利用马尔科夫链的结果,在离散事件系统(DES)逻辑层次的自动机模型基础上,对DES的Markov模型的稳态和暂态特性,分别从时间参数连续和离散的情况下,分四个情况进行了分析,通过实例对系统遍历性提出了一条更简单的且在连续和离散时间参数情况下都通用的判定规则,并利用Kolmogorov向后或向前方程,对连续时间参数DES的暂态特性进行了分析和计算。关于时间参数连续DES的稳态分布着重给出了生灭过程模型稳态分布的计算方法。讨论了DES模型统计性能层次与逻辑层次之间的联系。 展开更多
关键词 马尔科夫链 离散事件系统 连续时间参数 遍历性 Kolmogorov向后方程或向前方程
在线阅读 下载PDF
Genetic programming-based chaotic time series modeling 被引量:1
4
作者 张伟 吴智铭 杨根科 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1432-1439,共8页
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ... This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling. 展开更多
关键词 Chaotic time series analysis Genetic programming modeling Nonlinear Parameter Estimation (NPE) Particle Swarm Optimization (PSO) Nonlinear system identification
在线阅读 下载PDF
Robust H_∞ directional control for a sampled-data autonomous airship 被引量:2
5
作者 王曰英 王全保 +1 位作者 周平方 段登平 《Journal of Central South University》 SCIE EI CAS 2014年第4期1339-1346,共8页
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti... A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties. 展开更多
关键词 autonomous airship H∞ directional control sampled-data system polytopic parameter uncertainty Lyapunov-Krasovskii functional
在线阅读 下载PDF
Unbiased parameter estimation of continuous-time system based on modulating functions with input and output white noises
6
作者 贺尚红 李旭宇 《Journal of Central South University》 SCIE EI CAS 2011年第3期773-781,共9页
An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integratio... An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements. 展开更多
关键词 continuous-time system unbiased parameter modulating functions noise
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部