由于无网格(grid-less)稀疏重构方法的波达方向(direction of arrival,DOA)估计数学模型为单快拍形式,因此该方法只有在噪声电平趋近于零时才具有优越的性能.为了提高grid-less方法在信噪比(signal-to-noise ratio,SNR)较低时宽带相干...由于无网格(grid-less)稀疏重构方法的波达方向(direction of arrival,DOA)估计数学模型为单快拍形式,因此该方法只有在噪声电平趋近于零时才具有优越的性能.为了提高grid-less方法在信噪比(signal-to-noise ratio,SNR)较低时宽带相干信源的估计性能,提出了一种多快拍grid-less DOA估计方法.首先,对多快拍阵列观测矢量实施奇异值分解(singular value decomposition,SVD)获得观测矩阵的时域信号子空间,通过观测矩阵到时域信号子空间的投影实现观测矩阵的降噪;然后,为了不增加多快拍计算复杂度,将降噪后观测矩阵的列向量加权累加处理得到单快拍形式;最后,从理论上证明了本文提出的GL-SVD方法求解的模型是凸的,能够实现宽带信号DOA的精确重构.仿真结果表明,该方法在低SNR以及宽带相干信源情况下的估计精度都高于L 1范数最小化奇异值分解(L 1-norm minimum singular value decomposition,L 1-SVD)和离格稀疏贝叶斯推断奇异值分解(off-grid sparse Bayesian inference singular value decomposition,OGSBI-SVD),且在较小角度间隔的情况下具有更高的估计概率和分辨率.展开更多
针对欠定波达方向(direction of arrival,DOA)估计问题,研究了一种基于非圆信号的互质阵列DOA估计方法.对互质阵列输出互协方差矩阵和椭圆协方差矩阵进行向量化处理,通过数据重新链接并去冗余得到一个虚拟均匀线阵输出数据,实现阵列的...针对欠定波达方向(direction of arrival,DOA)估计问题,研究了一种基于非圆信号的互质阵列DOA估计方法.对互质阵列输出互协方差矩阵和椭圆协方差矩阵进行向量化处理,通过数据重新链接并去冗余得到一个虚拟均匀线阵输出数据,实现阵列的充分扩展且扩展后的虚拟阵元进一步得到增加;结合入射信号的空域稀疏性,在连续角度域将DOA估计问题转化为一个连续稀疏重构问题,有效避免了传统稀疏重构算法中由于角度域离散化所导致的基不匹配问题对估计性能的影响;通过求解相应的凸优化问题以及多项式求根实现DOA的估计.理论分析和仿真结果表明,该方法具有阵列扩展能力强、估计精度和分辨性能高等优良性能.展开更多
文摘由于无网格(grid-less)稀疏重构方法的波达方向(direction of arrival,DOA)估计数学模型为单快拍形式,因此该方法只有在噪声电平趋近于零时才具有优越的性能.为了提高grid-less方法在信噪比(signal-to-noise ratio,SNR)较低时宽带相干信源的估计性能,提出了一种多快拍grid-less DOA估计方法.首先,对多快拍阵列观测矢量实施奇异值分解(singular value decomposition,SVD)获得观测矩阵的时域信号子空间,通过观测矩阵到时域信号子空间的投影实现观测矩阵的降噪;然后,为了不增加多快拍计算复杂度,将降噪后观测矩阵的列向量加权累加处理得到单快拍形式;最后,从理论上证明了本文提出的GL-SVD方法求解的模型是凸的,能够实现宽带信号DOA的精确重构.仿真结果表明,该方法在低SNR以及宽带相干信源情况下的估计精度都高于L 1范数最小化奇异值分解(L 1-norm minimum singular value decomposition,L 1-SVD)和离格稀疏贝叶斯推断奇异值分解(off-grid sparse Bayesian inference singular value decomposition,OGSBI-SVD),且在较小角度间隔的情况下具有更高的估计概率和分辨率.
文摘针对欠定波达方向(direction of arrival,DOA)估计问题,研究了一种基于非圆信号的互质阵列DOA估计方法.对互质阵列输出互协方差矩阵和椭圆协方差矩阵进行向量化处理,通过数据重新链接并去冗余得到一个虚拟均匀线阵输出数据,实现阵列的充分扩展且扩展后的虚拟阵元进一步得到增加;结合入射信号的空域稀疏性,在连续角度域将DOA估计问题转化为一个连续稀疏重构问题,有效避免了传统稀疏重构算法中由于角度域离散化所导致的基不匹配问题对估计性能的影响;通过求解相应的凸优化问题以及多项式求根实现DOA的估计.理论分析和仿真结果表明,该方法具有阵列扩展能力强、估计精度和分辨性能高等优良性能.