提出了基于内积的压电陶瓷动态神经网络非线性、非光滑迟滞逆模型,采用反馈误差学习方法,快速地在线得到压电陶瓷的逆模型,避免了通过正模型求取压电陶瓷的Jacobian信息。结合PID反馈控制,在dSPACE系统平台上实现了压电陶瓷的神经网络...提出了基于内积的压电陶瓷动态神经网络非线性、非光滑迟滞逆模型,采用反馈误差学习方法,快速地在线得到压电陶瓷的逆模型,避免了通过正模型求取压电陶瓷的Jacobian信息。结合PID反馈控制,在dSPACE系统平台上实现了压电陶瓷的神经网络自适应逆控制。为提高实时性,采用了效率高、速度快的C-MEX S Function编程。实验结果表明:神经网络自适应逆控制的控制精度为0.13μm,而PID控制精度为0.32μm。所提出方法有效地消除了迟滞的影响,控制精度高。展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
文摘提出了基于内积的压电陶瓷动态神经网络非线性、非光滑迟滞逆模型,采用反馈误差学习方法,快速地在线得到压电陶瓷的逆模型,避免了通过正模型求取压电陶瓷的Jacobian信息。结合PID反馈控制,在dSPACE系统平台上实现了压电陶瓷的神经网络自适应逆控制。为提高实时性,采用了效率高、速度快的C-MEX S Function编程。实验结果表明:神经网络自适应逆控制的控制精度为0.13μm,而PID控制精度为0.32μm。所提出方法有效地消除了迟滞的影响,控制精度高。
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.